Esponenziale Bulgara

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Esponenziale Bulgara

Messaggio da LeZ » 16 ott 2011, 18:01

Trovare tutte quaterne di interi positivi $ (x,y,z,t) $ tali che: $ 1+5^x=2^y+2^z\cdot 5^t $

pepperoma
Messaggi: 82
Iscritto il: 03 giu 2010, 14:26
Località: Bari
Contatta:

Re: Esponenziale Bulgara

Messaggio da pepperoma » 16 ott 2011, 23:27

Modulo 5 l'equazione diventa $ 2^y=1 $, che implica $ 4|y $ (quindi anche $ y>3) $. Modulo 4 invece resta $ 2=2^y+2^z $ ed essendo $ y>3 $ ciò vuol dire $ 2^z=2 (mod 4) $: quindi $ z=1. $ Ora se pure $ x=1 $, è banale vedere che l'equazione non è mai verificata.Se $ t=1, $ la diofantea si riduce a $ 5^x=2^y+9 $, che ammette come unica soluzione$ x=2, y=4 $: infatti modulo 8 si prova la parità di $ x $ e si può scrivere $ x=2m, y=4n $, da cui $ (5^m)^2-(2^2n)^2=9. $ E' noto (nonchè elementare) che gli unici due quadrati di differenza 9 sono 25 e 16, che portano alle soluzioni suddette. Ora si supponga $ x,t>1 $. In tal caso, ragionando modulo 25, si trova che $ 20|y $. A questo punto, ponendo $ y=20a $ e tenendo presente che $ 2^{20}=1 (mod 11) $, si ottiene $ 1+5^x=(2^{20})^a+2 \cdot 5^t $ e perciò $ 5^x=2 \cdot 5^z (mod 11) $, che è impossibile. L'unica soluzione è (2;4;1;1).

(ora dovrebbe essere tutto a posto)
Ultima modifica di pepperoma il 17 ott 2011, 16:14, modificato 3 volte in totale.

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Re: Esponenziale Bulgara

Messaggio da dario2994 » 17 ott 2011, 13:42

Non ho letto la dimostrazione ma una soluzione c'è :roll:

p.s. E poi mica sei jordan :?
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

pepperoma
Messaggi: 82
Iscritto il: 03 giu 2010, 14:26
Località: Bari
Contatta:

Re: Esponenziale Bulgara

Messaggio da pepperoma » 17 ott 2011, 15:59

Errore di calcolo, ora correggo.

paga92aren
Messaggi: 358
Iscritto il: 31 lug 2010, 10:35

Re: Esponenziale Bulgara

Messaggio da paga92aren » 24 ott 2011, 15:03

e non dimenticare $(x,0,0,x)$

pepperoma
Messaggi: 82
Iscritto il: 03 giu 2010, 14:26
Località: Bari
Contatta:

Re: Esponenziale Bulgara

Messaggio da pepperoma » 24 ott 2011, 22:30

Diceva interi positivi, altrimenti l'avrei messo.

LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: Esponenziale Bulgara

Messaggio da LeZ » 01 nov 2011, 15:48

Benissimo ;)

Rispondi