Problema simil - Febbraio

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Giuseppe R
Messaggi: 571
Iscritto il: 22 mar 2008, 12:04
Località: A casa sua

Problema simil - Febbraio

Messaggio da Giuseppe R » 14 giu 2010, 10:32

Un problema del classico tipo di Febbraio...
Per quali m,n,p interi positivi si verifica:
$ \displaystyle \frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1 $

L'ho postato giusto per vedere metodi risolutivi di esercizi simili a questo diversi dal mio...
Esistono 10 tipi di persone: quelli che capiscono i numeri binari e quelli che non li capiscono.
"Il principio dei cassetti è quando hai n cassetti e n+1 piccioni: quindi ci sarà almeno un cassetto con 2 o più piccioni..." cit.

Avatar utente
fraboz
Messaggi: 90
Iscritto il: 09 giu 2010, 21:24
Località: reggio emilia

Messaggio da fraboz » 14 giu 2010, 12:05

ora provo a mettere la mia soluzione. Ragazzi correggetemi se scrivo della boiate perchè è una delle mie prime dimostrazioni.
dimostrazione:
trovare le soluzioni di $ 1/m+1/n+1/p=1 $ equivale a trovare le soluzioni di $ np+mp+mn=mnp $ da cui $ p(m+n)=mn(p-1) $. Dunque ora pongo $ p=k+3; m=x+3; n=y+3 $ con k,x,y che appartengono agli interi positivi e l'equazione diventa $ (k+3)(x+y+6)=(x+3)(y+3)(k+2) $ da cui, svolgendo i calcoli, $ -k(2x+2y+3+xy)=2xy+3x+3y $ che è palesemente falsa poichè il membro di sinistra è negativo. Dunque i valori di $ m, n, p $ sono minori o uguali a 3 ed inoltre ricordando l'equazione $ p(m+n)=mn(p-1) $ si deduce che p è diverso da 1. Adesso le uniche possibili soluzioni si svolgono a mano e si ottiene che l'unica terna che può funzionare è $ (3,3,3) $.

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 14 giu 2010, 12:15

fraboz ha scritto: Dunque i valori di $ m, n, p $ sono minori o uguali a 3
Qua sbagli. Perchè?

Giuseppe R
Messaggi: 571
Iscritto il: 22 mar 2008, 12:04
Località: A casa sua

Messaggio da Giuseppe R » 14 giu 2010, 12:18

E se ti dicessi che anche (2,4,4) è soluzione?
Mi sa che hai sbagliato a fare i conti, a me viene:
$ -k(2x+2y+y^2-6) = 2y^2 + 3x + 3y + 2xy - 18 $
E qui si può fare ben poco...
Esistono 10 tipi di persone: quelli che capiscono i numeri binari e quelli che non li capiscono.
"Il principio dei cassetti è quando hai n cassetti e n+1 piccioni: quindi ci sarà almeno un cassetto con 2 o più piccioni..." cit.

Avatar utente
fraboz
Messaggi: 90
Iscritto il: 09 giu 2010, 21:24
Località: reggio emilia

Messaggio da fraboz » 14 giu 2010, 12:53

@ndp15 mi potresti spiegare cosa ho sbagliato in quell'affermazione?

@Giuseppe R è probabile che io abbia sbagliato i calcoli( :roll: ) ma secondo me $ (k+3)(x+3+y+3)=(x+3)(y+3)(k+2) $ è uguale a $ kx+ky+6k+3x+3y+18=(k+2)(xy+3x+3y+9) $ che è uguale a $ kx+ky+6k+3x+3y+18=kxy+3kx+3ky+9k+2xy+6x+6y+18 $ che è uguale a $ -k(2x+2y+3+xy)=2xy+3x+3y $

Avatar utente
Francutio
Messaggi: 1104
Iscritto il: 17 feb 2008, 08:05
Località: Torino

Messaggio da Francutio » 14 giu 2010, 13:22

Non so fraboz, secondo me tu hai dimostrato solo che almeno 1 tra m, n, p deve essere minore o uguale a 3 con quei tuoi calcoli.

Infatti come dice Giuseppe R (2,4,4) è soluzione e ce ne sono altre che negano la tua "dimostrazione"

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 14 giu 2010, 13:23

fraboz ha scritto:@ndp15 mi potresti spiegare cosa ho sbagliato in quell'affermazione?
Che non necessariamente sia $ m $ che $ n $ che $ p $ sono minori o uguali a 3. (Se i tuoi calcoli sono giusti) puoi dire che non esiste soluzione con m,n,p maggiori di 3.

Giuseppe R
Messaggi: 571
Iscritto il: 22 mar 2008, 12:04
Località: A casa sua

Messaggio da Giuseppe R » 14 giu 2010, 13:46

fraboz ha scritto: @Giuseppe R è probabile che io abbia sbagliato i calcoli( :roll: ) ma secondo me $ (k+3)(x+3+y+3)=(x+3)(y+3)(k+2) $ è uguale a $ kx+ky+6k+3x+3y+18=(k+2)(xy+3x+3y+9) $ che è uguale a $ kx+ky+6k+3x+3y+18=kxy+3kx+3ky+9k+2xy+6x+6y+18 $ che è uguale a $ -k(2x+2y+3+xy)=2xy+3x+3y $
Pardon, errore mio, l'errore è quello spiegato da ndp15
Esistono 10 tipi di persone: quelli che capiscono i numeri binari e quelli che non li capiscono.
"Il principio dei cassetti è quando hai n cassetti e n+1 piccioni: quindi ci sarà almeno un cassetto con 2 o più piccioni..." cit.

Avatar utente
fraboz
Messaggi: 90
Iscritto il: 09 giu 2010, 21:24
Località: reggio emilia

Messaggio da fraboz » 14 giu 2010, 20:50

ragazzi forse sono riuscito a trovare la dimostrazione completa continuando quella sempre postata da me in precedenza 8).

Prima(sempre se la mia dimostrazione è esatta) ho dimostrato che in ogni terna almeno uno tra $ m, n, p $ è minore o uguale a tre. Inoltre $ m, n, p $ devono necessriamente essere diversi da 1.Inoltre in precedenza ho trovato anche la terna $ (3;3;3) $ che è l'unica terna possibile con almeno due valori 3 tra m, n ,p.

Ora procedo con la completazione della dimostrazione:
adesso basta provare il caso in cui uno tra m, n, p sia uguale a 2 in quanto nessun valore può essere 1 e l'unica terna con due tre l'ho già trovata(infatti le terne con un solo tre verranno tutte fuori con questa dimostrazione).
Dunque ora pongo $ p=2 $ (avrei anche potuto scegliere m o n)
e l'equazione diventa $ m+n=mn/2 $ da cui $ n=2m/(m-2) $ e applicando la scomposiione tra polinomi $ n=2+4/(m-2) $ da ciò a mano seguono le terne risolutive $ (3;6;2) (4;4;2) $. Inoltre provando con p=3 si ottiene nuovamente e solo (3;6;2) e (3;3;3) come terne risolutive. Adesso siccome per la prima dimostrazione almeno un valore è minore o uguale a 3 e siccome ho provato sia per 3 sia per 2 (anche per 1 ma si nota subito che è impossibile) penso di aver completato la dimostrazione. Naturalmente valgono anche le permutazioni di ogni terna. Spero di non aver scritto nuovamente boiate perchè se fosse così penso che mi darò al giardinaggio :lol: .

p.s. ho modificato il messaggio dopo la segnalazione di una dimenticanza segnalata da Giuseppe R

p.p.s. Qualcuno mi saprebbe spiegare cosa vuol significare " WLOG " e " EDIT " (scusate per l'ignoranza :lol: )?
Ultima modifica di fraboz il 15 giu 2010, 09:33, modificato 1 volta in totale.

Giuseppe R
Messaggi: 571
Iscritto il: 22 mar 2008, 12:04
Località: A casa sua

Messaggio da Giuseppe R » 15 giu 2010, 08:45

fraboz ha scritto:ragazzi forse sono riuscito a trovare la dimostrazione completa continuando quella sempre postata da me in precedenza 8).

Prima(sempre se la mia dimostrazione è esatta) ho dimostrato che in ogni terna almeno uno tra $ m, n, p $ è minore o uguale a tre. Inoltre $ m, n, p $ devono necessriamente essere diversi da 1.Inoltre in precedenza ho trovato anche la terna $ (3;3;3) $ che è l'unica terna possibile con almeno due valori 3 tra m, n ,p.

Ora procedo con la completazione della dimostrazione:
adesso basta provare il caso in cui uno tra m, n, p sia uguale a 2 in quanto nessun valore può essere 1 e l'unica terna con due tre l'ho già trovata(infatti le terne con un solo tre verranno tutte fuori con questa dimostrazione).
Dunque ora pongo $ p=2 $ (avrei anche potuto scegliere m o n)
e l'equazione diventa $ m+n=mn/2 $ da cui $ n=2m/(m-2) $ e applicando la scomposiione tra polinomi $ n=2+4/(m-2) $ da ciò a mano seguono le terne risolutive $ (3;6;2) (4;4;2) $. Inoltre provando con p=3 si ottiene nuovamente e solo (3;6;2) come terna risolutiva. Adesso siccome per la prima dimostrazione almeno un valore è minore o uguale a 3 e siccome ho provato sia per 3 sia per 2 (anche per 1 ma si nota subito che è impossibile) penso di aver completato la dimostrazione. Naturalmente valgono anche le permutazioni di ogni terna. Spero di non aver scritto nuovamente boiate perchè se fosse così penso che mi darò al giardinaggio :lol: .
Ok, ti sei dimenticato (3,3,3) ma la soluzione è giusta... per la prima parte si poteva fare anche così:
pongo WLOG $ m \leq n \leq p $ che implica $ \frac{1}{m} \geq \frac{1}{n} \geq \frac{1}{p} $. Da cui segue $ 1 \leq \frac{3}{m} $ ovvero $ m \leq 3 $. Abbia dimostrato che il minore (o uno dei minori se sono di più) è minore o uguale a 3.
FONTE
Giornalino della matematica

La mia soluzione invece l'ho fatta riscrivendo l'equazione in funzione di m, e poi procedendo a colpi di moduli e divisori... piuttosto lunghetta... ve la risparmio :lol:
Esistono 10 tipi di persone: quelli che capiscono i numeri binari e quelli che non li capiscono.
"Il principio dei cassetti è quando hai n cassetti e n+1 piccioni: quindi ci sarà almeno un cassetto con 2 o più piccioni..." cit.

Spammowarrior
Messaggi: 282
Iscritto il: 23 dic 2009, 17:14

Messaggio da Spammowarrior » 15 giu 2010, 09:43

wlog vuole dire without loss of generality, cioè senza perdità di generalità.
vuole dire che tratti un caso particolare ma che in qualunque altro caso il procedimento è identico (per esempio, tu dici: "pongo p=2 wlog" perchè se anche fosse m o n non cambierebbe nulla)

edit vuole dire che hai modificato il messaggio dopo averlo inviato

Avatar utente
fraboz
Messaggi: 90
Iscritto il: 09 giu 2010, 21:24
Località: reggio emilia

Messaggio da fraboz » 15 giu 2010, 09:55

:o grazie

Claudio.
Messaggi: 697
Iscritto il: 29 nov 2009, 21:34

Messaggio da Claudio. » 15 giu 2010, 11:14

Se fosse un febbraio p sarebbe sicuramente un primo! :lol:

Avatar utente
Francutio
Messaggi: 1104
Iscritto il: 17 feb 2008, 08:05
Località: Torino

Messaggio da Francutio » 15 giu 2010, 17:41

Claudio. ha scritto:Se fosse un febbraio p sarebbe sicuramente un primo! :lol:
leggendo il testo del problema avevo pensato la stessa cosa xD

Claudio.
Messaggi: 697
Iscritto il: 29 nov 2009, 21:34

Messaggio da Claudio. » 16 giu 2010, 11:49

Adesso:

Dato un numero primo p, determinare tutte le coppie ordinate di numeri naturali (m, n) che
verificano l’equazione:
$ \frac1m+\frac1n=\frac1p $

Rispondi