x^3+2x+1=2^y

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
taifu
Messaggi: 10
Iscritto il: 12 mag 2010, 14:09

Messaggio da taifu » 10 giu 2010, 18:23

exodd ha scritto:Vedete che è uno dei quesiti di ammissione al senior..
:?
:shock:
giuro che non ne sapevo niente, me l'ha proposto un amico (che non partecipa alle olimpiadi)

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 10 giu 2010, 19:06

Ma non ho capito, sarebbe quindi meglio non postare la soluzione sul forum o non è un problema?
Detto questo non sono ancora riuscito a risolverlo :roll:

Avatar utente
kn
Messaggi: 508
Iscritto il: 23 lug 2007, 22:28
Località: Sestri Levante (Genova)
Contatta:

Messaggio da kn » 10 giu 2010, 20:38

Penso che sui problemi di ammissione al Senior si possa discutere anche sul forum, tanto c'è già la soluzione nei video (e poi è il problema di TdN olimpica più difficile che abbia mai visto :shock: )
Viviamo intorno a un mare come rane intorno a uno stagno. (Socrate)

taifu
Messaggi: 10
Iscritto il: 12 mag 2010, 14:09

Messaggio da taifu » 10 giu 2010, 21:42

kn ha scritto:Penso che sui problemi di ammissione al Senior si possa discutere anche sul forum, tanto c'è già la soluzione nei video)
ah bene :D
mi sai dire esattamente di che video si tratta?

Avatar utente
Maioc92
Messaggi: 778
Iscritto il: 21 apr 2009, 21:07
Località: REGGIO EMILIA

Messaggio da Maioc92 » 10 giu 2010, 22:28

kn ha scritto:Penso che sui problemi di ammissione al Senior si possa discutere anche sul forum, tanto c'è già la soluzione nei video (e poi è il problema di TdN olimpica più difficile che abbia mai visto :shock: )
ma succede solo a me o è un problema della registrazione il fatto che sparisca l'audio nel momento in cui piever inizia a spiegare la soluzione di questo problema??
Il tempo svela ogni cosa......ma allora perchè quel maledetto problema non si risolve da solo?!

Jessica92
Messaggi: 34
Iscritto il: 19 mar 2010, 18:08

Messaggio da Jessica92 » 10 giu 2010, 22:55

Hint: x^2-x+1|2^(y-1)+(x-1)^2

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 10 giu 2010, 23:10

Maioc92 ha scritto:
kn ha scritto:Penso che sui problemi di ammissione al Senior si possa discutere anche sul forum, tanto c'è già la soluzione nei video (e poi è il problema di TdN olimpica più difficile che abbia mai visto :shock: )
ma succede solo a me o è un problema della registrazione il fatto che sparisca l'audio nel momento in cui piever inizia a spiegare la soluzione di questo problema??
Appena controllato, è un problema della registrazione.
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

minima.distanza
Messaggi: 131
Iscritto il: 11 giu 2010, 17:56
Località: Milano, in provincia...

Messaggio da minima.distanza » 02 lug 2010, 01:38

mmm beh, io ci provo ( premetto che si usa il martello pneumatico, anche se si usa la discesa infinita... se uno trova un diostrazione più elegante gli sono grato... anche perchè dubito che la mia sia corretta...)

Allora:

Se $ y=0 $ allora si hanno le due soluzioni $ (x,y) $ equivalenti a $ (-2,0) $ e $ (0,0) $ ( lo so, zero non è positivo e -2 nemmeno, ma mi serve come preliminare....)
pongo quindi $ y \ne 0 $ e inizio il problema...

Se $ y\ne 0\rightarrow x=2k+1 $.
Sviluppando l'espressione si ottiene $ 8k^3 +12k^2 +10k+4 = 2^{y} $...
Divido ambo i mebri per due e ottengo:
$ 4k^3 + 6k^2 + 5k +2 = 2^{y-1} $ che chiaramente non ha soluzioni intere per $ y=1 $ poichè è chiaro che il prodotto delle stesse sarebbe $ \frac{1}{4} $ ( e siccome il prodotto di nuemri naturali è un numero naturale, ciò è assurdo.). Ergo $ y\ne 1 $. Da qui noto che $ k $ deve essere pari e quindi $ k=2m $ da cui ottengo che $ 16m^3 +12m^2 +5m+1 = 2^{y-2} $che mi esclude $ y=2 $ poichè, nel caso lo fosse, si avrebbe che il prodotto delle soluzioni del precedente polinmio in m sarebbe -1, il che, supponendo le soluzioni in N, è assurdo. da qui noto poi che $ m= 2j+1 $. Sostituendo e dividendo come sopra si ha che :
$ 64j^3 +120j^2 +77j +17 = 2^{y-3} $. Da qui escludo che y sia uguale a tre poichè, se y lo fosse, si avrebbe il prodotto delle soluzioni pari a
$ \frac{16}{64} $... Chiaramente assurdo se si suppone che le soluzioni $ \in \mathbb{N} $. Ma attenzione: sono tornato nella situazione di prima, quando lavoravo col polinomio in m, in cui i coefficenti sono , in ordine,
$ pari,pari,dispari,dispari $.
( e qui è il passaggio logico che mi mette qualche dubbio).

Quindi, applicando reiteratamente $ k-volte $ il processo di sostituzione che ho applicato nel polinomio in $ m $ sopra, si torna sempre ad un polinomio con la stessa "struttura", che rende impossibile che y sia pari a $ 2+k $.

Così all'infinito. Ne segue che l'equazione non ha soluzioni intere.

Corretto ? ( scommetto che troverete che l'ultima passaggio è sbagliato :oops: attendo conferma....)

SalvoLoki
Messaggi: 31
Iscritto il: 03 mar 2010, 16:39

Messaggio da SalvoLoki » 02 lug 2010, 21:22

Ma dove sostituisci M una soluzione c'è, infatti è m=0 e y=2... da cui deriva k=0, da cui deriva x=1 :?

minima.distanza
Messaggi: 131
Iscritto il: 11 giu 2010, 17:56
Località: Milano, in provincia...

Messaggio da minima.distanza » 03 lug 2010, 19:19

:shock: è vero, pardon, provo a correggermi,ma a questo punto credo che sia tutto sbagliato...
:oops: è successo perchè io guardavo che tutte le soluzoni siano naturali, non solo una....
[/quote]

Veluca
Messaggi: 185
Iscritto il: 27 dic 2008, 01:08
Località: Chiavari (Genova)

Messaggio da Veluca » 06 lug 2010, 18:12

tre hint in "ordine crescente", almeno secondo me xD
Hint1: x^3+2x+1=(x+1)(x^2-x+3)-2
Hint2: x=5 mod 8, quindi x^2-x+3=7 mod 8
Hint3: -2 è residuo quadratico sse p=1,3 mod 8

sonia995
Messaggi: 25
Iscritto il: 28 nov 2010, 21:47

Re: x^3+2x+1=2^y

Messaggio da sonia995 » 10 dic 2010, 21:27

taifu ha scritto:Determinare tutti gli $ ~ x,y $ interi positivi tali che $ x^3+2x+1=2^y $
stò appena cominciando a vedere i problemi di teoria dei numeri, per cui non farò bene di sicuro, però ci provo, allora...

io farei così:

intanto se si sommano i coefficienti (compreso il termine noto) alterni si ottiene $ +2 $ e $ +2 $ quindi 2 numeri con stesso modulo e concordi positivi, quindi si possono scomporre per $ (x+1) $

ed ottengo $ (x+1)(x^2 + 1) = 2^y $

a questo punto mi viene da dire che non esistono $ x $ interi positivi per cui $ A(x) = 2^y $

per gli $ y $ per ora non mi viene in mente come fare, ma più tardi se ci riesco provo a farlo...

p.s.

no forse o sbagliato tutto, in pratica ho detto che gli zeri della funzione: $ A(x) $ sono tutti negativi o comlessi

ma non dovrebbe centrare niente sul fatto che la funzione $ A(x) $ sia uguale alla funzione $ 2^y $

quindi troviamo i valori per cui le due funzioni sono identiche...

riprendo la funzione scomposta $ (x+1)(x^2 +1) = 2^y $

intanto metto un po di combinazioni possibili e vedo un pò che succede...

(1+1)(1+1)=2^y → qui la coppia (1,2) va bene

(2+1)(4+1)=2^y → qui la coppia (2,3) va bene

(3+1)(9+1)=2^y → qui non ce ne sono

(4+1)(16+1)=2^y → qui non ce ne sono

ora vedo un pò...più tardi se la trovo, scrivo la soluzione

p.s.

ho cannato tutto, mi ero dimenticata del termine 0x^2 quindi non è quella la scomposizione XD...
Ultima modifica di sonia995 il 10 dic 2010, 22:06, modificato 2 volte in totale.

paga92aren
Messaggi: 358
Iscritto il: 31 lug 2010, 10:35

Re: x^3+2x+1=2^y

Messaggio da paga92aren » 10 dic 2010, 21:41

non ho provato a risolvere il problema, ma $(x+1)(x^2+1)=x^3+x^2+x+1$ che non è uguale al testo.

sonia995
Messaggi: 25
Iscritto il: 28 nov 2010, 21:47

Re: x^3+2x+1=2^y

Messaggio da sonia995 » 10 dic 2010, 21:59

paga92aren ha scritto:non ho provato a risolvere il problema, ma $(x+1)(x^2+1)=x^3+x^2+x+1$ che non è uguale al testo.
hai ragione, però scomponendo con ruffini mi viene così...non riesco a capire dove sbaglio

p.s.

ok che stupida non calcolavo il coefficiente del termine x^2 che non c'è ma con ruffini per scomporlo devo metterlo lostesso XD

sonia995
Messaggi: 25
Iscritto il: 28 nov 2010, 21:47

Re: x^3+2x+1=2^y

Messaggio da sonia995 » 10 dic 2010, 23:22

ok, scusate per prima, per rifarmi vi dico che l'ho risolto logicamente, ma matematicamente non so come spiegarlo, per cui ora "cerco" di spiegarvi cosa ho fatto:


allora:

x^3 = dispari per ogni x dispari...

2x +1 = genera solo numeri dispari...

sappiamo che 2^y è per forza pari in quanto 2^y genera solo potenze di 2...
qiuindi x deve essere necessariamente dispari, perchè solo la somma di 2 dispari o di 2 pari da un numero pari...

ora guardiamo nelle potenze di 2 quanti numeri dispari sono contenuti... (sappiamo che in 2^n abbiamo 2^n-1) numeri dispari... quindi abbiamo sempre un numero pari di dispari...

ora sappiamo che i pari generati dalla funzione (x^3 +2x +1) sono formati da 2 numeri dispari, è l'unica potenza di 2 che abbia 2 numeri dispari è proprio 2^2

se prendiamo ad esempio 2^3 sappiamo che è un numero al cui interno ci sono 2^3-1 dispari quindi 4 dispari in tutto, se si sommano a coppie, come coppia finale si ha sempre 2 numeri pari per tutte le potenze di 2 tranne (2^2) e questo non va bene in quanto i numeri pari generati dalla funzione x^3 +2x +1 sono formati da coppie di dispari e l'unica possibile soluzione quindi è proprio X=1 e Y=2

spero che sia giusto il ragionamento...

Rispondi