infiniti quadrati

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
gibo92
Messaggi: 95
Iscritto il: 27 dic 2009, 20:39

infiniti quadrati

Messaggio da gibo92 » 07 apr 2010, 16:12

Dimostrare che esistono infinite coppie di interi positivi (a,b) tali che:
$ a^{2}+\left ( a+1 \right )^{2}=b^{2} $

Avatar utente
Reginald
Messaggi: 137
Iscritto il: 24 gen 2009, 15:52
Località: Trento

Messaggio da Reginald » 07 apr 2010, 18:43

Boh, lo faccio io...allora, ricordando le formuline per le terne pitagoriche, si deve dimostrare che per infinite coppie di m;n si ha $ 2mn=m^2-n^2+1 $. Faccio il delta e ottengo $ n=-m+-\sqrt{m^2+1+m^2} $. Ora basta che n possa essere un intero positivo per infiniti m interi positivi. Che possa essere positivo non ci piove, basta quindi che sia intero. Quindi si deve avere per infiniti m;x che $ 1=x^2 -2m^2 $, che è un'equazione di Pell...
Ci sono due errori che si possono fare lungo la via verso la verità...non andare fino in fondo, e non iniziare.
Confucio

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 07 apr 2010, 22:01

Ho provato a farlo in maniera elementare, senza grandi risultati, e poi ho deciso di piazzare la soluzione più meccanica in assoluto (che finchè il livello dei problemi resta basso funge sempre...).
Considero l'espressione, un polinomio in a e risolvo con la formula delle equazioni di secondo grado.
$ $a=\frac{2\pm 2\sqrt{2b^2-1}}{4} $
È palese che basta che il discriminante sia un quadrato, perchè tutta la frazione lo sia... fortunatamente esistono infiniti b tali che sia un quadrato come ci dice Pell (la soluzione minima è (1,1) invece della pell standard corrispondente è (3,2)) da cui concludo.
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

Avatar utente
kn
Messaggi: 508
Iscritto il: 23 lug 2007, 22:28
Località: Sestri Levante (Genova)
Contatta:

Messaggio da kn » 11 apr 2010, 19:55

Ovviamente uno dopo essersi sporcato le mani se le lava, quindi in gara scrive: partendo da (3, 5), se (a, b) è soluzione lo è anche (3a+2b+1, 4a+3b+2) :lol:
Viviamo intorno a un mare come rane intorno a uno stagno. (Socrate)

Avatar utente
gibo92
Messaggi: 95
Iscritto il: 27 dic 2009, 20:39

Messaggio da gibo92 » 11 apr 2010, 20:51

si, anke io lo avevo risolto con pell, ma ci arrivavo con parekki brutti passaggi...

Rispondi