Numeri Primi 2

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Denolrah_Elure
Messaggi: 20
Iscritto il: 06 nov 2009, 19:24

Numeri Primi 2

Messaggio da Denolrah_Elure » 07 nov 2009, 22:03

Provare che per c>8/3, esiste un numero reale k tale che la parte intera di k^c^n è un numero primo per ogni intero positivo n.

Avatar utente
Haile
Messaggi: 515
Iscritto il: 30 mag 2008, 14:29
Località: Bergamo

Messaggio da Haile » 06 dic 2009, 15:27

È una generalizzazione del teorema di Mills.

Sicuro\a che ne esista una dimostrazione olimpica?
[i]
Mathematical proofs are like diamonds: hard and clear.

[/i]

Denolrah_Elure
Messaggi: 20
Iscritto il: 06 nov 2009, 19:24

Messaggio da Denolrah_Elure » 06 dic 2009, 17:36

No. L'ho postato per vedere se qualcuno ne era a conoscenza

Avatar utente
Haile
Messaggi: 515
Iscritto il: 30 mag 2008, 14:29
Località: Bergamo

Messaggio da Haile » 06 dic 2009, 18:21

Denolrah_Elure ha scritto:No. L'ho postato per vedere se qualcuno ne era a conoscenza
Capito.

Comunque qui c'è una dimostrazione (non olimpica).
[i]
Mathematical proofs are like diamonds: hard and clear.

[/i]

Denolrah_Elure
Messaggi: 20
Iscritto il: 06 nov 2009, 19:24

Messaggio da Denolrah_Elure » 06 dic 2009, 18:50

Ottimo! grazie mille...

Rispondi