n=a+b dove a e b non sono primi

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

n=a+b dove a e b non sono primi

Messaggio da jordan » 23 set 2009, 03:13

Mostrare che ogni intero n>11 è esprimibili come somma di due numeri composti. 8)
The only goal of science is the honor of the human spirit.

Avatar utente
Fedecart
Messaggi: 522
Iscritto il: 09 mar 2008, 22:49
Località: Padova

Messaggio da Fedecart » 23 set 2009, 12:44

Dividiamo due casi. Se $ n-1 $ non è primo allora si può sempre scrivere n come $ n=(n-1)+1 $.
Se $ n-1 $ è primo, allora certamente $ n-4 $ non lo sarà. Dimostro questo ricordando che ogni primo maggiore di 3 da resto più o meno uno nella divisione per 6.
Quindi $ n \equiv 0 (6) $ oppure $ n \equiv 2 (6) $
Dunque $ n-4 \equiv -4 (6) $ oppure $ n-4 \equiv -2 (6) $
Quindi nel caso che $ n-1 $ sia primo si ha $ n=(n-4)+4 $
Quindi la tesi è (spero) dimostrata

Avatar utente
EUCLA
Messaggi: 771
Iscritto il: 21 apr 2005, 19:20
Località: Prato

Messaggio da EUCLA » 23 set 2009, 12:55

Non mi convince mica tanto. L'1 lo si considera composto?
E mi sfugge dove hai usato il fatto che valga per n>11.

C'è una soluzione molto più semplice 8)

Avatar utente
Fedecart
Messaggi: 522
Iscritto il: 09 mar 2008, 22:49
Località: Padova

Messaggio da Fedecart » 23 set 2009, 13:03

Ho pensato che un numero o è primo o è composto, e l'uno non lo si considera primo... Comunque penserò all'altro modo! =)

geda
Messaggi: 125
Iscritto il: 30 ott 2007, 12:03

Messaggio da geda » 23 set 2009, 14:44

Se $ n $ e' pari si puo' sempre scrivere $ n=a+b $, con $ a, b $ pari maggiori di 2 (ricordiamo che $ n>11 $).

Se $ n $ e' dispari, posso sempre scrivere $ n=9+b $ con $ b $ pari, maggiore di 2 (ricordiamo che $ n>11 $).

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 23 set 2009, 18:21

1 non è nè primo nè composto.
Comunque si, quella di geda va bene..altrimenti tra {n-4,n-6,n-8} esiste un multiplo di 3.
The only goal of science is the honor of the human spirit.

Rispondi