Riguardo i primi esprimibili come somma di 2 quadrati

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Riguardo i primi esprimibili come somma di 2 quadrati

Messaggio da jordan » 30 giu 2009, 20:12

1- Mostrare che se un primo p>2 è esprimibile come somma di quadrati di due interi allora 4|p-1.

2- Mostrare che ogni primo p>2 tale che 4|p-1 è esprimibile come somma di due quadrati.

3- Mostrare che ogni primo p>2 tale che 4|p-1 è esprimibile in modo unico come somma di due quadrati.

4- Dato p>2 primo tale che 4|p-1 siano a un residuo quadratico modulo p e b un residuo non quadratico.
Mostrare che $ \displaystyle (\frac{1}{2}|\sum_{i=0}^{p-1}{\left( \frac{x^3+ax}{p} \right)}| )^2+(\frac{1}{2}|\sum_{i=0}^{p-1}{\left( \frac{x^3+bx}{p} \right)}| )^2=p $


Nb. Qui il simbolo $ (\frac{a}{p}) $ denota il simbolo di Legendre
Edit: modificato il testo ai punti 2 e 3..
Ultima modifica di jordan il 01 lug 2009, 00:30, modificato 1 volta in totale.
The only goal of science is the honor of the human spirit.

CoNVeRGe.
Messaggi: 98
Iscritto il: 22 ott 2008, 18:51

Re: Riguardo i primi esprimibili come somma di 2 quadrati

Messaggio da CoNVeRGe. » 30 giu 2009, 20:49

jordan ha scritto: 1- Mostrare che se un primo p è esprimibile come somma di quadrati di due interi allora 4|p-1.
$ \displaystyle a^2 + b^2 = p $

a e b sono diversi e quindi p è necessariamente dispari. Allora uno solo tra a e b deve essere dispari, supponiamo che questo sia b.

$ \displaystyle a^2 + b^2 - 1 = p - 1 = a^2 + (b-1) (b+1) $

$ \displaystyle a^2 $ è divisibile per 4 e almeno uno tra $ \displaystyle (b-1) $ e $ \displaystyle (b+1) $ anche, quindi $ \displaystyle 4 | p - 1 $

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 30 giu 2009, 20:56

Ok alla prima. Ah dimenticavo, p>2.
The only goal of science is the honor of the human spirit.

Jacobi
Messaggi: 227
Iscritto il: 08 mar 2007, 16:29

Re: Riguardo i primi esprimibili come somma di 2 quadrati

Messaggio da Jacobi » 30 giu 2009, 22:15

jordan ha scritto: Mostrare che $ \displaystyle (\frac{1}{2}|\sum_{i=0}^{p-1}{\left( \frac{x^3+ax}{p} \right)}| )^2+(\frac{1}{2}|\sum_{i=0}^{p-1}{\left( \frac{x^3+bx}{p} \right)}| )^2=p $
ma perche hai messo il valore assloluto dentro al quadrato? forse il valore assoluto era da intendere applicato ai singoli elementi della somma?? :roll:
MIND TORNA CON NOI

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 30 giu 2009, 22:27

Era per evidenziare che ciò scritto nelle due parentesi tonde stavano a indicare i due (soli) interi positivi che soddisfano la 3)..
The only goal of science is the honor of the human spirit.

Jacobi
Messaggi: 227
Iscritto il: 08 mar 2007, 16:29

Messaggio da Jacobi » 30 giu 2009, 23:09

ah ok! :)
MIND TORNA CON NOI

Enrico Leon
Messaggi: 237
Iscritto il: 24 nov 2008, 18:08
Località: Gorizia

Messaggio da Enrico Leon » 01 lug 2009, 00:16

Ma per il 2) e il 3) sono sempre due quadrati? Sennò faccio 1+1+1+1+...

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 01 lug 2009, 11:32

Enrico Leon ha scritto:Ma per il 2) e il 3) sono sempre due quadrati? Sennò faccio 1+1+1+1+...
Credo che ti sia già risposto da solo :wink:

Pairo
Messaggi: 26
Iscritto il: 18 mar 2009, 22:08
Località: Parma

Re: Riguardo i primi esprimibili come somma di 2 quadrati

Messaggio da Pairo » 03 lug 2009, 10:29

jordan ha scritto: 2- Mostrare che ogni primo p>2 tale che 4|p-1 è esprimibile come somma di due quadrati.
Allora, è da un po' che ci provo; l'unica cosa che sono riuscito a dimostrare è che esistono "un po'" di quadrati di numeri minori di p, tali che la loro somma è un multiplo di p (usando il piccolo teorema di fermat); questa è una buona strada? Si potrebbe avere qualche hint? Grazie mille!

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: Riguardo i primi esprimibili come somma di 2 quadrati

Messaggio da jordan » 03 lug 2009, 14:51

Pairo ha scritto:... l'unica cosa che sono riuscito a dimostrare è che esistono "un po'" di quadrati di numeri minori di p, tali che la loro somma è un multiplo di p (usando il piccolo teorema di fermat); questa è una buona strada? Si potrebbe avere qualche hint? Grazie mille!
La strada di solito utilizzata è quella di mostrare che p=4k+1 è composto in $ [tex] $\mathbb{Z}[/tex]..
Si potrebbe concludere anche dal tuo metodo mostrando che esiste una somma di quadrati multipla di p e minore di 2p..
Hint (per un terza possibile strada): considera i numeri $ 1^{4k}, 2^{4k},\ldots,(4k)^{4k} $, quanto vale il resto mod p? Per cui se scegliamo tutte le differenze consecutive..?
The only goal of science is the honor of the human spirit.

Avatar utente
gismondo
Messaggi: 84
Iscritto il: 05 feb 2009, 18:42
Località: Roma

Messaggio da gismondo » 03 lug 2009, 16:26

Vediamo...
Prendiamo $ xz \equiv y \pmod p $
$ x^2z^2 \equiv y^2 $
$ -x^2 \equiv y^2 $(Teorema 1)
$ x^2+y^2=cp $
$ 2p>cp $ (Thue)
$ 2>c $
$ $c=1 $
Segue la tesi.

Teorema 1: se $ 4|p-1 $ allora $ z^2 \equiv -1 \pmod p $ si può risolvere.
Teorema di Thue: la congruenza $ xz \equiv y \pmod n $ con $ $n $ intero positivo NON quadrato perfetto ammette soluzioni NON nulle $ |x|<\sqrt{n} $ e $ |y|<\sqrt{n} $
Ultima modifica di gismondo il 03 lug 2009, 17:00, modificato 2 volte in totale.
"Per tre cose vale la pena di vivere: la matematica, la musica e l'amore"

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 03 lug 2009, 16:44

Alla TG: dimostralo :P
The only goal of science is the honor of the human spirit.

Avatar utente
gismondo
Messaggi: 84
Iscritto il: 05 feb 2009, 18:42
Località: Roma

Messaggio da gismondo » 03 lug 2009, 16:55

Scusa non capisco :o
Devo dimostrare i teoremi? Con c=1 abbiamo $ x^2+y^2=cp \Rightarrow x^2+y^2=(1)p=p $
"Per tre cose vale la pena di vivere: la matematica, la musica e l'amore"

ndp15
Messaggi: 598
Iscritto il: 18 gen 2007, 19:01

Messaggio da ndp15 » 03 lug 2009, 20:27

gismondo ha scritto:Scusa non capisco :o
Devo dimostrare i teoremi?
Credo intendesse che, in campo olimpico, se usi il Teorema di Thue lo dovresti saper dimostrare (cosa in questo caso non impossibile).

Ah proposito: anche io ho sbattuto la testa per un po' sul punto 2 senza ricavarne nulla.

Avatar utente
Haile
Messaggi: 515
Iscritto il: 30 mag 2008, 14:29
Località: Bergamo

Messaggio da Haile » 03 lug 2009, 20:34

ndp15 ha scritto: Ah proposito: anche io ho sbattuto la testa per un po' sul punto 2 senza ricavarne nulla.
Idem. Domanda:

Se dimostrassi che un intero di forma 4k+1 è esprimibile come somma di 2 quadrati sse è primo o multiplo di 5... avrei provato anche che tutti i primi di tale forma lo sono?
[i]
Mathematical proofs are like diamonds: hard and clear.

[/i]

Rispondi