Staffetta tdn

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Jessica92
Messaggi: 34
Iscritto il: 19 mar 2010, 18:08

Messaggio da Jessica92 » 28 mar 2010, 20:50

jordan ha scritto: @Jessica92: sopra ho dimostrato che x=11 è il minimo intero per cui quella disuguaglianza è verificata..
Ora si :D

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 29 mar 2010, 20:25

Problema decisamente poco originale, ma non mi è venuto in mente nulla di meglio. Mi pare sia anche gia passato dal forum. Stava nella shortlist del 2004.

Trovare tutte le funzione $ $f:\mathbb{N}\to\mathbb{N} $ tali che:
$ $\forall\ (m,n)\in\mathbb{N}^2\ \ [f(m)]^2+f(n)|(m^2+n)^2 $
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

Gauss91
Messaggi: 240
Iscritto il: 19 set 2009, 16:52
Località: Pisa / Milano

Messaggio da Gauss91 » 29 mar 2010, 23:04

Provo la mia prima equazione funzionale dopo aver letto la dispensa di Federico Poloni (che se mi vedesse probabilmente mi strozzerebbe! :P ).
Scelgo m ed n tali che $ m^2 + n = p $ primo. Allora $ [f(m)]^2 + f(n) | p^2 $, cioè
(i) $ [f(m)]^2 + f(n) = 1 $, che è impossibile.
(ii) $ [f(m)]^2 + f(n) = p $, in tal caso $ [f(m)]^2 + f(n) = m^2 + n $ cioè $ f(x) = x, \forall x \in \mathbb{N} $.
(iii) $ [f(m)]^2 + f(n) = p^2 = (m^2 + n)^2 $. Operando $ n \rightarrow m $ si ottiene $ [f(m)]^2 + f(m) = (m^2 + m)^2 $, cioè $ [f(m)]^2 + f(m) - (m^2 + m)^2 = 0, \forall m \in \mathbb{N} $. Questa uguaglianza deve essere identicamente vera e ciò succede per
$ f(m) = \displaystyle\frac{-1 + \sqrt{1 + 4(m^2+m)^2}}{2} $, ma questa funzione non assume mai valori naturali, quindi la soluzione non è accettabile.
In conclusione, $ f(x) = x, \forall x \in \mathbb{N} $, e si vede facilmente che è effettivamente soluzione.
"Cos'è l'aritmetica?" "E' quella scienza in cui si impara quello che si sa già!"

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 29 mar 2010, 23:30

Gauss, secondo me hai sbagliato qualcosina. Prova a trovare gli errori ;)
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

Gogo Livorno
Messaggi: 99
Iscritto il: 14 gen 2010, 14:56
Località: Livorno

Messaggio da Gogo Livorno » 30 mar 2010, 00:11

Gauss91 ha scritto:(iii) $ [f(m)]^2 + f(n) = p^2 = (m^2 + n)^2 $. Operando $ n \rightarrow m $ si ottiene $ [f(m)]^2 + f(m) = (m^2 + m)^2 $, cioè $ [f(m)]^2 + f(m) - (m^2 + m)^2 = 0, \forall m \in \mathbb{N} $.
Fermo restando che la mia opinione vale come il due di spade con briscola bastoni, secondo me l'errore sta qua.

Se poni come ipotesi che m^2+n sia primo, se metti m al posto di n neghi l'ipotesi, in quanto diventa m^2+m=m(m+1), che in N è vera solo per N=1.

Ha un senso?

Gauss91
Messaggi: 240
Iscritto il: 19 set 2009, 16:52
Località: Pisa / Milano

Messaggio da Gauss91 » 30 mar 2010, 00:26

Secondo me non è così: il caso (iii) dice solo che la "divisione funzionale" di partenza diventa necessariamente l'EQUAZIONE funzionale
$ [f(m)]^2 + f(n) = (m^2 + n)^2 $.
Non nego nessun'ipotesi sostituendo m a n.
Fermo restando che posso aver detto una sbrodolata micidiale.
"Cos'è l'aritmetica?" "E' quella scienza in cui si impara quello che si sa già!"

Gogo Livorno
Messaggi: 99
Iscritto il: 14 gen 2010, 14:56
Località: Livorno

Messaggio da Gogo Livorno » 30 mar 2010, 00:37

Gauss91 ha scritto:Fermo restando che posso aver detto una sbrodolata micidiale.
Idem, sia chiaro. :D

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 30 mar 2010, 10:12

Sul problema 60. Sì, ha un'aria dcisamente familiare.. Comunque come solito con $ \mathbb{N} $ si indica l'insieme degli interi non negativi (e in particolare anche $ 0\in \mathbb{N} $) e in questo modo a Gauss91 gli falla addirittura il punto i). Del punto ii) non capisco quale sia la deduzione logica. Del punto iii) hai il vincolo che sia $ m^2+n\in \mathbb{P} $, ciò significa che n non può assumere qualunque valore, e in particolare quelli che può assumere sono tutti coprimi con m, e in particolare ciò che dice GogoLivorno ha senso..
The only goal of science is the honor of the human spirit.

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 30 mar 2010, 12:00

Ops intendevo l'insieme degli interi positivi (non capirò mai a pieno sta notazione...)
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

Gauss91
Messaggi: 240
Iscritto il: 19 set 2009, 16:52
Località: Pisa / Milano

Messaggio da Gauss91 » 30 mar 2010, 14:36

Sì il fatto che erano positivi me lo sentivo per istinto. :P Comunque ho capito il mio errore, e a questo punto quello che ha detto GogoLivorno è giusto sì! Va beh non si può vivere senza errori 8)
"Cos'è l'aritmetica?" "E' quella scienza in cui si impara quello che si sa già!"

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 30 mar 2010, 15:44

Soluzione problema 60. Scegliendo m=n=1 abbiamo f(1)(f(1)+1)|4 da cui f(1)=1. Ora per ogni primo p abbiamo $ 1+f(p-1)|p^2 $; se fosse $ f(p-1)=p^2-1 $ allora avremo che scegliendo $ (p^2-1)^2+1=f(p-1)^2+f(1)\mid ((p-1)^2+1)^2=(p-1)^4+2(p-1)^2+1 $, ma per ogni p vale lhs<rhs<2lhs, per cui come prima per ogni p primo vale $ f(p-1)=p-1 $. Ora scelto un intero positivo n vale $ (p-1)^2+f(n)=f^2(p-1)+f(n)\mid ((p-1)^2+n)^2 $ $ =((p-1)^{2}+f(n))((p-1)^{2}+2n-f(n))+(n-f(n))^{2} $, cioè divide anche $ (n-f(n))^2 $ che non dipende da p, per cui è sufficiente prendere p sufficientemente grande per concludere che f(n)=n per ogni intero n>0.[]
The only goal of science is the honor of the human spirit.

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 30 mar 2010, 16:18

ma per ogni p vale lhs<rhs<2lhs
In verità mi pare valga 0<rhs<lhs da cui comunque deriva la stessa tesi ;)
Per il resto tutto giusto, a te il prossimo.
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 30 mar 2010, 17:00

dario2994 ha scritto:
ma per ogni p vale lhs<rhs<2lhs
In verità mi pare valga 0<rhs<lhs [...]
Dici che $ (p^2-1)^2+1<((p-1)^2+1)^2 $ ?
Dovrebbe essere $ (p+1)^2(p-1)^2<(p-1)^2((p-1)^2+2) $
cioè $ p^2+2p+1<p^2-2p+3 $ :roll:

Anyway, Problema 61. Trovare tutti i primi p>2 tali che $ \displaystyle p\mid \sum_{1\le i\le 103}{i^{p-1}} $
The only goal of science is the honor of the human spirit.

dario2994
Messaggi: 1428
Iscritto il: 10 dic 2008, 21:30

Messaggio da dario2994 » 30 mar 2010, 17:48

I numeri minori o uguali a 103 divisibili per p sono: $ $\left\lfloor\frac {103} p\right\rfloor $
Quindi per fermat vale: $ $\sum_{i=1}^{103}i^{p-1}\equiv 103-\left\lfloor\frac {103} p\right\rfloor\pmod{p} $
Quindi il problema richiede di trovare i primi per cui:
$ $103\equiv \left\lfloor\frac {103} p\right\rfloor\pmod{p} $ *
Faccio a mano i casi con p<10 sono solo 3,5,7.
Per 3 ottengo che * è rispettata, perciò p=3 è soluzione.
Per 5 ottengo che * non è rispettata.
Per 7 ottengo che * non è rispettata.
Assumo p>10.
Fisso k,a (con a<p) in modo che valga $ $103=kp+a $.
Vale $ $\left\lfloor\frac {103} p\right\rfloor=k $ *
Vale $ $103\equiv a\pmod{p} $ *
Unendo gli asterischi ottengo che deve valere $ $a\equiv k\pmod{p} $. Quindi per qualche z non negativo ottengo:
$ $zp^2+ap+a=(zp+a)p+a=kp+a=103 $
Se z>0 allora vale:
$ $zp^2+ap+a\ge p^2\ge 121>103 $
Che è assurdo. Quindi z=0. Da cui:
$ $a(p+1)=103\Rightarrow p+1|103 $
Ma 103 è fortunatamente primo.
Quindi l'unica soluzione è $ $p=3 $
...tristezza ed ottimismo... ed ironia...
Io ti racconto lo squallore di una vita vissuta a ore di gente che non sa più far l'amore...
"Allora impara a fare meno il ruffiano. Io non lo faccio mai e guarda come sono ganzo" Tibor Gallai

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Messaggio da jordan » 30 mar 2010, 19:16

Già sai che va bene, aspettiamo il prossimo :wink:
The only goal of science is the honor of the human spirit.

Rispondi