Quadrati, e altro! - 3n+1=a^2, 4n+1=b^2

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
EUCLA
Messaggi: 771
Iscritto il: 21 apr 2005, 19:20
Località: Prato

Quadrati, e altro! - 3n+1=a^2, 4n+1=b^2

Messaggio da EUCLA » 29 apr 2008, 19:00

Siano $ 3n+1 $ e $ 4n+1 $ entrambi quadrati perfetti. Dimostrare che $ 56\vert n $


Buon lavoro!

E' un pò più difficile rispetto a quelli che posto di solito...

Avatar utente
julio14
Messaggi: 1206
Iscritto il: 11 dic 2006, 18:52
Località: Pisa

Messaggio da julio14 » 29 apr 2008, 21:09

Alur, abbiamo le due equazioni di partenza, e inoltre sottraendole una all'altra $ $n=b^2-a^2 $.
$ $4n+1\cong 1\vee 5 \mod8; b^2\cong 0\vee1\vee4\mod8\rightarrow 4n\cong0\mod8 $
quindi $ n $ è pari e $ b $ dispari, segue che per $ $n=b^2-a^2 $ anche $ a $ è dispari e $ $a^2\cong 1\mod8 $. Quindi $ $3n\cong0\mod8 $ e $ 8|n $. Rimane il 7.
...
some time later...
...
Ho scritto la soluzione dell'8 e mi sono messo a fare il 7, dopo averci sbattuto la testa per bene inizio a mandare questa parte che non mi va di aver scritto tutto per niente :D
"L'unica soluzione è (0;0;0)" "E chi te lo dice?" "Nessuno, ma chi se ne fotte"
[quote="Tibor Gallai"]Alla fine, anche le donne sono macchine di Turing, solo un po' meno deterministiche di noi.[/quote]
Non sono un uomo Joule!!!

Avatar utente
matemark90
Messaggi: 67
Iscritto il: 03 nov 2006, 20:02
Località: la città del carnevale (RE)

Messaggio da matemark90 » 29 apr 2008, 21:28

Dato che mi hanno anticipato per l'8 posto la soluzione per il 7.

Sappiamo che i residui quadratici (mod 7) sono 0,1,2,4.
Si consideri la somma dei due quadrati. $ 3n+1+4n+1=7n+2\equiv2\pmod7 $
Quindi abbiamo 3 possibilità:

$ 3n+1\equiv0\pmod7 $ e $ 4n+1\equiv2\pmod7 $ che è impossibile

$ 3n+1\equiv2\pmod7 $ e $ 4n+1\equiv0\pmod7 $ che è impossibile

$ 3n+1\equiv1\pmod7 $ e $ 4n+1\equiv1\pmod7 $ che è verificato se e sole se n è multiplo di 7
Hasta la Carla... SIEMPRE!!!
Per tre cose vale la pena di vivere: la matematica, la musica e l'amore.

Avatar utente
EUCLA
Messaggi: 771
Iscritto il: 21 apr 2005, 19:20
Località: Prato

Messaggio da EUCLA » 29 apr 2008, 21:39

All right! :D

Avatar utente
Goldrake
Messaggi: 160
Iscritto il: 12 set 2007, 10:57

Messaggio da Goldrake » 03 mag 2008, 14:30

matemark90 ha scritto: $ 3n+1\equiv0\pmod7 $ e $ 4n+1\equiv2\pmod7 $ che è impossibile

$ 3n+1\equiv2\pmod7 $ e $ 4n+1\equiv0\pmod7 $ che è impossibile
Per dire che quegli altri casi sono impossibili, usi il TCR?
Ciao.

Rispondi