angolo tra due vettori

Rette, triangoli, cerchi, poliedri, ...
Rispondi
emanuela
Messaggi: 1
Iscritto il: 07 mar 2007, 12:22

angolo tra due vettori

Messaggio da emanuela » 07 mar 2007, 12:42

ciao a tutti, è la prima volta che scrivo sul forum ed ho un problema di goniometria che non riesco a risolvere, spero possiate aiutarmi.
devo trovare l'angolo compreso tra due vettori v e w dei quali conosco solo le componenti. ho calcolato il coseno dell'angolo come differenza tra il prodotto scalare tra v e w ed il prodotto dei loro moduli v e w. in questo modo però non posso sapere se l'angolo si trova tra 0 e 180 o tra 180 e 360 gradi, mi serve il segno del seno. esiste un modo numerico per ottenerlo dai dati che ho a disposizione? oppure posso calcolare l'angolo in un altro modo?

pic88
Messaggi: 741
Iscritto il: 16 apr 2006, 11:34
Località: La terra, il cui produr di rose, le dié piacevol nome in greche voci...

Messaggio da pic88 » 07 mar 2007, 13:58

Il fatto è che l'angolo formato da due vettori non è uno solo: ce ne sono due, la cui somma fa 360°. Quindi dipende da quale angolo vuoi calcolare. :D

marcox^^
Messaggi: 51
Iscritto il: 24 mar 2006, 15:45

Messaggio da marcox^^ » 08 mar 2007, 18:23

Non è vero :wink: , l'angolo tra due vettori è ben definito.
Comunque si può calcolare come: $ arccos( (v_x w_x + v_y w_y + v_z w_z) / (w v) ) $

pic88
Messaggi: 741
Iscritto il: 16 apr 2006, 11:34
Località: La terra, il cui produr di rose, le dié piacevol nome in greche voci...

Messaggio da pic88 » 08 mar 2007, 18:29

Mi sembra che emanuela abbia già trovato il coseno dell'angolo.
Volevo farle osservare che il problema del segno non susiste. Del resto, anche la formula che tu proponi dà come risultato un numero comreso tra 0 e $ \pi $, che rappresenta la misura in radianti del più piccolo dei due angoli individuati :?

marcox^^
Messaggi: 51
Iscritto il: 24 mar 2006, 15:45

Messaggio da marcox^^ » 08 mar 2007, 18:49

Ok, ma l'angolo tra due vettori v e w, per definizione, è l'angolo tra due rette orientate aventi rispettivamente la direzione e il verso di v e w; l'angolo di due rette orientate è definito come l'angolo compreso fra 0 e pi greco, estremi inclusi, formato dalle due semirette uscenti da un qualunque punto A e aventi la direzione e il verso delle due rette orientate. Quindi l'angolo tra due vettori è unico.

EvaristeG
Site Admin
Messaggi: 4791
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Messaggio da EvaristeG » 08 mar 2007, 20:13

Può essere sensato introdurre il concetto di angoli orientati. Quello di cui parla marcox^^ sono gli angoli orientati modulo pi greco. Ad emanuela sembra servano gli angoli orientati e basta: l'angolo $ \measuredangle(v,w) $ è l'angolo misurato in senso antiorario a partire da v andando verso w (oppure in senso orario, basta mettersi d'accordo, ma di solito si usa antiorario per la regola della mano destra e menate varie); quindi l'angolo tra i vettori (1,0) e (-1,0) sarà pi greco, mentre l'angolo tra i vettori (1,0) e (0,-1) sarà $ 3\pi/2 $ (mentre l'angolo tra i vettori (0,-1) e (1,0) sarà pi/2).
Per conoscere questo angolo, basta notare che, come il prodotto scalare ne dà il coseno (e lo darebbe anche se scegliessimo l'altra orientazione), il prodotto vettore ne dà il seno (e il seno cambierebbe di segno se cambiassimo orientazione); quindi
avrai che
$ \cos(\theta)=(v_1w_1+v_1w_2+v_3w_3)/(|v||w|) $
e
$ \sin(\theta)=(v\wedge w)/(|v||w|)=(v_2w_3-v_3w_2,v_3w_1 $$ -v_1w_3,v_1w_2-v_2w_1)/(|v||w|) $
dai quali puoi dedurre univocamente l'angolo $ \theta $
Operativamente, calcoli l'arcocoseno del primo e a seconda del segno del seno scegli se prendere il valore ottenuto tra 0 e pi oppure tale valore + pi.

Rispondi