Geometria3

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Geometria3

Messaggio da karl » 04 lug 2005, 14:09

Sono 3 problemi tutti di primo allenamento o ..quasi.

1)Si consideri il triangolo T e poi il triangolo T' i cui lati
siano le altezze di T ed infine il triangolo T" i cui lati siano
le altezze di T'.
Calcolare l'area S di T conoscendo quelle S' e S" di T' e T".


2)Tra tutte le trasversali che bisecano il perimetro del generico
triangolo ABC trovare quelle di lunghezza minima e massima.
Dare una eventuale interpretazione geometrica ai risultati ottenuti


3)Si consideri il triangolo acutangolo ABC e dal vertice A si conducano
le perpendicolari alle bisettrici degli angoli <ABC e <ACB.I piedi di tali
perpendicolari individuino la retta $ r_1 $ e siano $ r_2,r_3 $
le rette costruite in modo analogo a partire dai restanti vertici B e C.
Dimostrare che la terna $ (r_1,r_2,r_3) $ determina un triangolo
simile al dato
.

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Re: Geometria3

Messaggio da Boll » 04 lug 2005, 15:54

karl ha scritto: 3)Si consideri il triangolo acutangolo ABC e dal vertice A si conducano
le perpendicolari alle bisettrici degli angoli <ABC e <ACB.I piedi di tali
perpendicolari individuino la retta $ r_1 $ e siano $ r_2,r_3 $
le rette costruite in modo analogo a partire dai restanti vertici B e C.
Dimostrare che la terna $ (r_1,r_2,r_3) $ determina un triangolo
simile al dato
.
Si prolunghino le perpendicolari alle bisettrici fino a toccare il lato $ BC $. Si chiamino quindi $ H $ e $ K $ i due piedi delle perpendicolari $ M $ e $ N $ le due intersezioni delle rette $ AH $ e $ AK $ con $ BC $. I triangoli $ AHC $,$ MHC $ sono isometrici (2 angoli, 1 lato). I triangoli $ AKB $,$ NKB $ sono isometrici (2 angoli, 1 lato). Quindi $ AK=KN $ e $ AH=MH $, da cui, per Talete $ HK||MN $, ma $ MN\equiv BC $. Procedendo analogamente sugli altri 2 lati si avrà la tesi.

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 04 lug 2005, 19:20

Sono d'accordo col fatto che HK sia parallelo a BC.Non riesco a capire invece quali
siano i triangoli congruenti e perche':ci deve essere un errore nella posizione delle lettere oppure sono io che non mi raccapezzo.

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Boll » 05 lug 2005, 10:05

A me sembra che tutto funzii... Gli angoli congruenti sono quelli retti e quelli dati dalla bisezione degli angoli alla base, i lati congruenti quelli comuni.

Immagine

Rispondi