Ritorno alla Geometria

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Ritorno alla Geometria

Messaggio da karl » 29 giu 2005, 18:32

Immagine
Sia ABC un triangolo isoscele sulla base BC ed X un punto interno
a BC ,distinto dagli estremi.La generica retta, passante per il
punto medio L di AX,intersechi gli assi di BX ed XC in P e Q.
Dette V,M e W le proiezioni ortogonali di P,A e Q su BC,dimostrare che:
AM=PV+QW

Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch » 29 giu 2005, 19:06

Allora, è ovvio che $ PV $, $ LU $ e $ QW $ saranno parallele, essendo perpendicolari allo stesso lato. Ora, essendo $ BX+XC=AC $, $ \frac{BX}{2}+\frac{XC}{2}=\frac{BC}{2}=MC=XV+WX=VW $, e $ XW=WC $per ipotesi. Inoltre $ MU=UX $ per il teorema di Talete.
Ora, dato $ BV=VX $ e $ BM=VW $, ne ricaviamo che $ VM=WC=XM $, quindi $ VU=UW $, quindi $ PL=LQ $ sempre per Talete. Tracciando la perpendicolare a $ PV $ per $ P $, sempre per il buon Talete, $ PV+QW=2\cdot LU $. Tuttavia tracciando la perpendicolare a $ LU $ per $ L $, che incontra $ AM $ in $ T $, $ AL=TM=TA $, quindi $ PV+QW=TM+TA=AM $

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Boll » 29 giu 2005, 19:19

Un pò di geometria dopo tanta Algebra, risoluzione brute force

Quesito invariante per isometria-omotetia, piano cartesiano $ Oxy $ con:
$ B\equiv O $
$ C\equiv (2,0) $
$ M\equiv (1,0) $
$ A\equiv (1,2t) $
$ X\equiv (2g,0) $
$ W\equiv (g+1,0) $
$ V\equiv (g,0) $
$ L\equiv \left(\dfrac{2g+1}{2},t\right) $

Tutti i parametri introdotti sono reali

Fascio per $ L $: $ y=m\left(x-\dfrac{2g+1}{2}\right)+t $

Imponiamo il passaggio per $ x=g $ e $ x=g+1 $ che sono gli assi avremo che:
$ P\equiv \left(g,t-\dfrac{1}{2}m\right) $
$ Q\equiv \left(g,t+\dfrac{1}{2}m\right) $

Risulta che $ PV+QW=t-1/2m+t+1/2m=2t=AM $

q.e.d.
Ultima modifica di Boll il 29 giu 2005, 19:20, modificato 1 volta in totale.

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Boll » 29 giu 2005, 19:20

Acc, avevo sbagliato un conto e sono rimasto a ricontrollare, battuto da Human, e anche di tanto ;)

Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch » 29 giu 2005, 19:25

Il tempo poco conta, caro Boll, e poi magari ho visto il post prima di te.. e non confrontiamo la qualità della soluzione, please, altrimenti.. :oops:

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Boll » 29 giu 2005, 19:44

Simpatico corollario (credo)
$ [ABM]=[ACM]=[PVWQ] $

dove $ [blablablba] $ è l'estensione piana di $ blablablabla $

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 29 giu 2005, 19:56

Che dire ? La velocita' e' il motore di questo forum!

Rispondi