vEry badLy naMed cOntest

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
Federico II
Messaggi: 213
Iscritto il: 14 mag 2014, 14:56
Località: Roma

vEry badLy naMed cOntest

Messaggio da Federico II » 12 giu 2017, 14:15

ELMO 2017 problema 2. Se volete partecipare alla gara e non lo avete ancora fatto, non leggete questo testo.
Testo nascosto:
Sia $ABC$ un triangolo con ortocentro $H$, e sia $M$ il punto medio di $BC$. Siano $P$ e $Q$ due punti distinti sulla circonferenza di diametro $AH$, diversi da $A$, tali che $M$ giace sulla retta $PQ$. Dimostrare che l'ortocentro di $APQ$ giace sulla circonferenza circoscritta ad $ABC$.
Il responsabile della sala seminari

Talete
Messaggi: 665
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: vEry badLy naMed cOntest

Messaggio da Talete » 12 giu 2017, 14:21

E così quest'anno ELMO sta per vEry badLy naMed cOntest eh? Non sanno più cosa inventarsi insomma... preferivo Everybody Lives at Most Once, sinceramente :)
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Talete
Messaggi: 665
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: vEry badLy naMed cOntest

Messaggio da Talete » 12 giu 2017, 15:54

Fare i conti in baricentriche e poi ricaricare la pagina perdendoli tutti: fatto. #mainagioia
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

cip999
Messaggi: 148
Iscritto il: 26 nov 2013, 14:44

Re: vEry badLy naMed cOntest

Messaggio da cip999 » 12 giu 2017, 18:07

Testo nascosto:
Detto $S$ il punto medio di $PQ$, l'ortocentro di $APQ$ è il simmetrico di $H$ rispetto a $S$, il che significa che $H(APQ) \in \odot ABC$ iff $S$ sta sulla Feuerbach. E questo è vero perché, detto $N$ il punto medio di $AH$, $MN$ è diametro (della Feuerbach) e $NSM = 90^{\circ}$ dato che $N$ è il centro di $\odot APQ$.
- E cosa c'è di peggio del suicidio?
- La vita.

Avatar utente
Federico II
Messaggi: 213
Iscritto il: 14 mag 2014, 14:56
Località: Roma

Re: vEry badLy naMed cOntest

Messaggio da Federico II » 12 giu 2017, 18:17

Ok, decisamente meglio dell'eventuale soluzione di Talete.
Ora vado a deprimermi.
Testo nascosto:
In gara ho provato per circa un'ora e mezza inversioni assurde, poi sono passato al 3, e dopo un'ora a vuoto sono tornato qui e ho avuto subito l'idea giusta, ma poi per concludere invece di notare che $MN$ è diametro mi sono messo a dimostrare che $MH_B$ e $MH_C$ tangono $\odot APQ$
Il responsabile della sala seminari

Talete
Messaggi: 665
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: vEry badLy naMed cOntest

Messaggio da Talete » 12 giu 2017, 18:31

Federico II ha scritto:
12 giu 2017, 18:17
Ok, decisamente meglio dell'eventuale soluzione di Talete.
Non ti piacciono cose tipo $\sqrt{\lambda S_A+S_C}$?
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti