BST 2012/5

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
Federico II
Messaggi: 230
Iscritto il: 14 mag 2014, 14:56
Località: Roma

BST 2012/5

Messaggio da Federico II » 11 set 2015, 18:02

Sia $ABC$ un triangolo scaleno acutangolo. Siano $A_0$, $B_0$, $C_0$ i punti medi dei lati $BC$, $AC$, $AB$ rispettivamente. Una circonferenza passa per $B_0$ e $C_0$ e tange la circoscritta ad $ABC$ in un punto $P\neq A$. Sia $D$ il piede dell'altezza uscente da $A$. Sia $G$ il baricentro di $ABC$. Sia $D_0$ la proiezione di $A_0$ sulla retta $B_0C_0$.
(a) Dimostrare che la retta $B_0C_0$ e le tangenti alla circoscritta in $A$ e in $P$ concorrono.
(b) Dimostrare che i punti $P$, $D$, $G$ e $D_0$ sono allineati.
PS: Oltre ad essere un problema BST, è una versione hintata del problema IMO SL 2011/G4.
Il responsabile della sala seminari

igoh
Messaggi: 38
Iscritto il: 11 mag 2015, 16:15
Località: ceprano

Re: BST 2012/5

Messaggio da igoh » 12 set 2015, 17:32

La tesi a) viene subito, chiamiamo M il punto di intersezione delle tangenti in A e P, N quello della tangente in P con BoCo e K quello della tangente in A con B_0C_0. Ora per il teorema delle tangenti e secanti alla circonferenza MA^2=MP^2 e NP^2=NBo*NCo quindi dimostrando che MA^2=NBo*NCo avremo la tesi. Ma quest'ultima uguaglianza discende dalla similitudine dei triangoli KAB_0 e KAC_0 che sono simili poiché hanno CoKA in comune e KACo congruente a KBoA in quanto KACo e ACB giacciono sulla stessa corda e ACB è congruente ad ABoCo perché le rette BC e BoCo sono parallele.
Stasera tento la b) ma la vedo dura :lol:

Avatar utente
Federico II
Messaggi: 230
Iscritto il: 14 mag 2014, 14:56
Località: Roma

Re: BST 2012/5

Messaggio da Federico II » 29 set 2015, 15:25

Ancora nessuno per il punto b? Per il punto a mi sembra che igoh abbia avuto le idee giuste ma forse andrebbe messa un po' meglio, magari usando il $\LaTeX$.
Il responsabile della sala seminari

EvaristeG
Site Admin
Messaggi: 4649
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: BST 2012/5

Messaggio da EvaristeG » 29 set 2015, 18:15

Federico II ha scritto:ma forse andrebbe messa un po' meglio, magari usando il $\LaTeX$.
La correttezza contenutistica e la completezza espositiva hanno poco a che fare con il LaTeX. Se trovi passaggi carenti, mal giustificati o errati, segnalalo.
Nel frattempo igoh, che mi pare abbia iniziato a usare il LaTeX, magari tornerà ad editare il post per renderlo esteticamente più gradevole.

Avatar utente
<enigma>
Messaggi: 876
Iscritto il: 24 set 2009, 16:44

Re: BST 2012/5

Messaggio da <enigma> » 29 set 2015, 18:23

"Col $\LaTeX$ è tutto bello, scritto bene, e sembra tutto giusto. Eh no! Se Whitney scrive in $\LaTeX$ è Whitney, se io scrivo in $\LaTeX$ sono sempre un coglione!" (cit.)
"Quello lì pubblica come un riccio!" (G.)
"Questo puoi mostrarlo o assumendo abc o assumendo GRH+BSD, vedi tu cos'è meno peggio..." (cit.)

Avatar utente
Federico II
Messaggi: 230
Iscritto il: 14 mag 2014, 14:56
Località: Roma

Re: BST 2012/5

Messaggio da Federico II » 01 ott 2015, 15:31

Allora il fatto è che alcune idee sono giuste, ma per come è messa adesso non è molto chiara, per esempio perché se $KAB_0$ e $KAC_0$ sono simili puoi affermare che $MA^2=NB_0\cdot NC_0$? Alla fine potevi esprimerti un po' meglio, specificando che $\widehat{ACB}$ è supplementare a $\widehat{KAC_0}$ e a $\widehat{KB_0A}$. Poi la cosa del $\LaTeX$ è solo per l'estetica del testo e per renderlo più facilmente leggibile.
Il responsabile della sala seminari

igoh
Messaggi: 38
Iscritto il: 11 mag 2015, 16:15
Località: ceprano

Re: BST 2012/5

Messaggio da igoh » 02 ott 2015, 21:21

Allora intanto scusate il ritardo e visto che ci sono riscrivo in maniera diversa oltre che decente la prima parte (fatemi sapere se fila), per quanto riguarda la seconda mi manca l'allineamento di $P$ agli altri tre quindi per ora niente. :lol:
Allora riprendendo la notazione precedente sia $K$ l'intersezione della tangente in $A$ e di $B_0C_0$ ed $N$ quella di $B_0C_0$ e della tangente in $P$.
Essendo la tangente in $A$ asse radicale della circoscritta e della circonferenza passante per $B_0,C_0$e $A$ (mi pare che sia già implicita nel testo la tangenza di queste due che comunque è facile da dimostrare per omotetia per esempio) essa è il luogo dei punti equipotenti alle suddette coniche ma lo stesso vale per la retta $B_0C_0$, riferendoci alle due circonferenze interne, quindi per definizione il punto $K$ risulta essere il luogo di tutti e soli i punti equipotenti a tutte e tre le circonferenze.
Lo stesso ragionamento si può applicare al punto $N$ ma avendo dimostrato che $K$ è unico ciò implica che $N$ e $K$ coincidono quindi le tre rette concorrono.

Avatar utente
Federico II
Messaggi: 230
Iscritto il: 14 mag 2014, 14:56
Località: Roma

Re: BST 2012/5

Messaggio da Federico II » 03 ott 2015, 12:57

Sì ora va bene. La tangenza che dici tu va dimostrata, ma come dici si può fare per omotetia.
Il responsabile della sala seminari

igoh
Messaggi: 38
Iscritto il: 11 mag 2015, 16:15
Località: ceprano

Re: BST 2012/5

Messaggio da igoh » 03 ott 2015, 18:28

Metto anche l'allineamento di $D,G,D_0$ ma come detto prima manca P
Testo nascosto:
Chiamiamo $S$ e $T$ rispettivamente i punti di intersezioni di $B_0C_0$ con $AD$ e $AA_0$.
Si nota che $ ASC_0 \sim ADB $ e $AST \sim ADA_0 $ per ovvie uguaglianze di angoli date dalle rette parallele.
Dalla prima, essendo $C_0$ punto medio, si ricava $AS=\frac{AD}{2}$ e unendo questo risultato alla seconda similitudine si ha $ST=TD_0=\frac{DA_0}{2}$ e $AT=A_0T=\frac{AA_0}{2}$.
Ora per proprietà del baricentro $A_0G=\frac{AA_0}{3}$ che implica $TG=TA_0-GA_0=\frac{AA_0}{6}=\frac{GA_0}{2}$ inoltre essendo $\widehat{DA_0G}=\widehat{GTD_0}$ perché alterni interni quindi $GDA_0 \sim GTD_0$ per il secondo criterio (non avrei mai pensato di doverlo usare un giorno :shock: ).
Ne deduciamo che $\widehat{SGD_0}=\widehat{DGA_0}$ e avendo un lato in comune sono anche opposti al vertice quindi $D,G,D_0$ sono allineati.

Avatar utente
Federico II
Messaggi: 230
Iscritto il: 14 mag 2014, 14:56
Località: Roma

Re: BST 2012/5

Messaggio da Federico II » 04 ott 2015, 14:28

Testo nascosto:
Forse alla fine volevi dire $\widehat{TGD_0}$ anziché $\widehat{SGD_0}$, in tal caso è giusta (anche se non è scritta bene). Ora manca solo $P$ (la parte difficile del problema, ovvero l'unica richiesta del problema originale della shortlist).
Il responsabile della sala seminari

LucaMac
Messaggi: 174
Iscritto il: 14 set 2014, 19:59
Località: Napoli

Re: BST 2012/5

Messaggio da LucaMac » 04 ott 2015, 15:54

(Ovviamente) viene in
Testo nascosto:
BARICENTRICHE
"And if we want to buy something to drink?"
"Just go to 7-11"
-----------------------------------
"Why an inequality?"
"Inequality happens"

Rispondi