Quando la tripolare contiene il circocentro

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Francesco Sala
Messaggi: 126
Iscritto il: 13 ago 2012, 21:16

Quando la tripolare contiene il circocentro

Messaggio da Francesco Sala » 24 nov 2014, 15:55

Sia dato un triangolo $ ABC $ con circocentro $ O $. Chiamiamo $ X,Y,Z $ i circocentri dei cerchi $ \odot(BOC),\odot(COA),\odot(AOB) $.
a) Dimostrare che le circonferenze $ \odot(AYZ),\odot(BXZ),\odot(CXY) $ concorrono in un punto $ V $.
b) Dimostrare che la tripolare di $ V $ rispetto ad $ ABC $ passa per $ O $.

NOTA: Se in un triangolo $ ABC $ prendiamo un punto $ P $, supponiamo che le rette $ AP,BP,CP $ incontrino $ BC,CA,AB $ in $ A_1,B_1,C_1 $; se $ B_1C_1 \cap BC=A_2 $ e analoghi, allora (per il teorema di Desargues sui due triangoli $ ABC $ e $ A_1B_1C_1 $) i punti $ A_2,B_2,C_2 $ sono allineati: tale retta si dice tripolare del punto $ P $ rispetto ad $ ABC $.

Talete
Messaggi: 742
Iscritto il: 05 giu 2014, 13:47
Località: Riva del Garda

Re: Quando la tripolare contiene il circocentro

Messaggio da Talete » 30 giu 2015, 16:49

Francesco Sala ha scritto:Sia dato un triangolo $ ABC $ con circocentro $ O $. Chiamiamo $ X,Y,Z $ i circocentri dei cerchi $ \odot(BOC),\odot(COA),\odot(AOB) $.
a) Dimostrare che le circonferenze $ \odot(AYZ),\odot(BXZ),\odot(CXY) $ concorrono in un punto $ V $.
b) Dimostrare che la tripolare di $ V $ rispetto ad $ ABC $ passa per $ O $.

NOTA: Se in un triangolo $ ABC $ prendiamo un punto $ P $, supponiamo che le rette $ AP,BP,CP $ incontrino $ BC,CA,AB $ in $ A_1,B_1,C_1 $; se $ B_1C_1 \cap BC=A_2 $ e analoghi, allora (per il teorema di Desargues sui due triangoli $ ABC $ e $ A_1B_1C_1 $) i punti $ A_2,B_2,C_2 $ sono allineati: tale retta si dice tripolare del punto $ P $ rispetto ad $ ABC $.
Ciao! Forse sono un po' in ritardo per rispolverare questo topic, ma il problema mi interessa particolarmente...
potresti darmi cortesemente qualche hint per risolverlo? Grazie <3

P.S.: io non sono Talete, ma gli ho rubato l'account...
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo

EvaristeG
Site Admin
Messaggi: 4647
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Quando la tripolare contiene il circocentro

Messaggio da EvaristeG » 30 giu 2015, 17:04

Talete ha scritto:
P.S.: io non sono Talete, ma gli ho rubato l'account...
Se poi tu dicessi chi sei sarebbe pure carino :)

Francesco Sala
Messaggi: 126
Iscritto il: 13 ago 2012, 21:16

Re: Quando la tripolare contiene il circocentro

Messaggio da Francesco Sala » 01 lug 2015, 11:13

Per adesso metto qualche suggerimento per il punto a) (con questi si possono costruire molti approcci possibili):
Testo nascosto:
1) La tesi di a) vale anche se si prende un punto $ P $ qualsiasi al posto di $ O $
2) Sia $ A_1B_1C_1 $ il triangolo antipedale di $ P $: allora...
3) Ricordiamo un fatto interessante: in un quadrilatero $ ABCD $ i cerchi dei nove punti di $ ABC,ABD,BCD,ACD $ e i cerchi passanti per le proiezioni di un vertice sulle rette formate dagli altri tre concorrono in uno stesso punto
4) Proviamo a invertire in $ P $
5) Ricordiamo un altro fatto interessante: dati due triangoli $ ABC,XYZ $ i cerchi $ (BCX),(CAY),(ABZ) $ concorrono se e solo se $ (YZA),(ZXB),(XYC) $ concorrono

Rispondi