46. Una concorrenza non sorprendente

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
Karl Zsigmondy
Messaggi: 138
Iscritto il: 09 lug 2011, 14:32
Località: Città di Altrove, Kansas

46. Una concorrenza non sorprendente

Messaggio da Karl Zsigmondy » 12 feb 2013, 16:09

Siano A, B, C, D punti distinti su una retta, in quest'ordine. Le circonferenze di diametro AC e BD si intersecano in X e Y. O è un punto arbitrario sulla retta XY, ma non è un punto di AD. CO interseca la circonferenza di diametro AC in M, e Bo interseca la circonferenza di diametro BD in N. Provare che le rette AM, DN, XY concorrono.
"Un matematico è una macchina che converte caffè in teoremi."
"Life is very short and there's no time for fussing and fighting, my friend!"

mat94
Messaggi: 198
Iscritto il: 20 ago 2012, 10:29

Re: 46. Una concorrenza non sorprendente

Messaggio da mat94 » 12 feb 2013, 17:20

Un altro bel problema :D
Supponiamo che DN e AM non incontrano XY nello stesso punto. Il punto in cui DN incontra XY è l'ortocentro di BOD che chiamiamo Q. Il punto in cui AM incontra XY è l'ortocentro di AOC che chiamiamo P. Sia R l'intersezione tra AD e XY. Poichè P e Q sono ortocentri si ha la similitudine tra i triangoli ORC e ARP e tra i triangoli ORB e QRD. Da queste similitudine si ottengono le relazioni: $OR\cdot PR=RC\cdot RA$ e $OR\cdot QR=RB\cdot RD$. Ma poiché R sta sull'asse radicale si ha $RC\cdot RA=RB\cdot RD$. Quindi P e Q coincidono.

Avatar utente
Karl Zsigmondy
Messaggi: 138
Iscritto il: 09 lug 2011, 14:32
Località: Città di Altrove, Kansas

Re: 46. Una concorrenza non sorprendente

Messaggio da Karl Zsigmondy » 12 feb 2013, 18:53

IMO 1992/1... vai col prossimo! :D
"Un matematico è una macchina che converte caffè in teoremi."
"Life is very short and there's no time for fussing and fighting, my friend!"

Rispondi