problema 5 gara nazionale danese

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
alunik
Messaggi: 69
Iscritto il: 05 dic 2009, 12:07

problema 5 gara nazionale danese

Messaggio da alunik » 10 gen 2012, 13:34

Nell'esagono ABCDEF tutti gli angoli sono uguali. La misura dei lati é tale che AB=CD=EF=3 e BC=DE=FA=2
Le diagonali AD e CF si intersecano in G. Dato un punto H su CD tale che DH=1 dimostrare che il triangolo EGH é equilatero.
[tex]\equiv mergency[/tex]

Avatar utente
Karl Zsigmondy
Messaggi: 138
Iscritto il: 09 lug 2011, 14:32
Località: Città di Altrove, Kansas

Re: problema 5 gara nazionale danese

Messaggio da Karl Zsigmondy » 10 gen 2012, 14:47

Si ha subito che AD è parallela a EF, BC perchè l'esagono è equiangolo, e similmente sono parallele anche AB, CF, DE. Ora per il teorema del coseno ho che:
$ HE = \sqrt{DH^2 + DE^2 - 2 \cdot DH \cdot DE \cdot cosHDE}=\sqrt{1+4+2} = \sqrt{7} $
Inoltre per quanto detto ABCG è parallelogramma, e dato che ABC misura 120° ne segue che il triangoo AGF è equilatero. Poichè AF=2 per ipotesi, ho che GF=2. Ora per Talete su ABCF ho che CF=5 e quindi CG=CF-GF=3. Ora per il teorema del coseno:
$ GH=\sqrt{CG^2 + CH^2 -2 \cdot CG \cdot CH \cdot cosGCH}=\sqrt{9+4-6}=\sqrt{7} $
$ GE=\sqrt{FG^2 + FE^2 -2 \cdot FG \cdot FE \cdot cosGFE}=\sqrt{4+9-6}=\sqrt{7} $
Ho applicato che GCH e GFE sono di 60°, che segue da quanto affermato precedentemente.
Ho quindi ottenuto la tesi dal momento che EG=GH=HE.
"Un matematico è una macchina che converte caffè in teoremi."
"Life is very short and there's no time for fussing and fighting, my friend!"

Avatar utente
alunik
Messaggi: 69
Iscritto il: 05 dic 2009, 12:07

Re: problema 5 gara nazionale danese

Messaggio da alunik » 10 gen 2012, 14:57

Giusto! Io lo ho fatto mettendo nel piano cartesiano. Comunque capite il livello dei nazionali danesi se questo doveva essere il più difficile o il secondo più difficile.
[tex]\equiv mergency[/tex]

Avatar utente
Karl Zsigmondy
Messaggi: 138
Iscritto il: 09 lug 2011, 14:32
Località: Città di Altrove, Kansas

Re: problema 5 gara nazionale danese

Messaggio da Karl Zsigmondy » 10 gen 2012, 15:06

alunik ha scritto:Giusto! Io lo ho fatto mettendo nel piano cartesiano. Comunque capite il livello dei nazionali danesi se questo doveva essere il più difficile o il secondo più difficile.
Ripensandoci potevo anche usare il fatto che i triangoli GFE, GCH sono congruenti. Beh, sì, il livello sembra molto modesto.
"Un matematico è una macchina che converte caffè in teoremi."
"Life is very short and there's no time for fussing and fighting, my friend!"

Mist
Messaggi: 542
Iscritto il: 01 gen 2011, 23:52
Località: Provincia di Milano

Re: problema 5 gara nazionale danese

Messaggio da Mist » 10 gen 2012, 15:44

Oppure per farla tutta tutta puramente euclidea (senza calcoli) si poteva dire che dal fatto che EGF e GCD sono congruenti deriva che $\hat{EGF} + \hat{HGC} = 120°$ (questo perchè $\hat{DCG}=\hat{EFG} = 60°$) e quindi $\hat{EGP} = 60°$...
"Se [...] non avessi amore, non sarei nulla."
1Cor 13:2

"[...] e se io non so pentirmi del passato, la libertà è un sogno"
Soren Kierkegaard, Aut-Aut, Ed. Mondadori, pag. 102

Avatar utente
Karl Zsigmondy
Messaggi: 138
Iscritto il: 09 lug 2011, 14:32
Località: Città di Altrove, Kansas

Re: problema 5 gara nazionale danese

Messaggio da Karl Zsigmondy » 10 gen 2012, 18:04

Mist ha scritto:Oppure per farla tutta tutta puramente euclidea (senza calcoli) si poteva dire che dal fatto che EGF e GCD sono congruenti deriva che $\hat{EGF} + \hat{HGC} = 120°$ (questo perchè $\hat{DCG}=\hat{EFG} = 60°$) e quindi $\hat{EGP} = 60°$...
Sì, mi riferivo proprio a questo. Voglio credere che sia di un po' di anni fa.
"Un matematico è una macchina che converte caffè in teoremi."
"Life is very short and there's no time for fussing and fighting, my friend!"

Mist
Messaggi: 542
Iscritto il: 01 gen 2011, 23:52
Località: Provincia di Milano

Re: problema 5 gara nazionale danese

Messaggio da Mist » 10 gen 2012, 18:37

ah ok scusami, non avevo capito :|
"Se [...] non avessi amore, non sarei nulla."
1Cor 13:2

"[...] e se io non so pentirmi del passato, la libertà è un sogno"
Soren Kierkegaard, Aut-Aut, Ed. Mondadori, pag. 102

Avatar utente
alunik
Messaggi: 69
Iscritto il: 05 dic 2009, 12:07

Re: problema 5 gara nazionale danese

Messaggio da alunik » 10 gen 2012, 18:43

E se vi dicessi che era la gara di questa mattina? Problema numero 5 di 5?
[tex]\equiv mergency[/tex]

Rispondi