gamma e punto di tangenza

Rette, triangoli, cerchi, poliedri, ...
Rispondi
danielf
Messaggi: 203
Iscritto il: 17 set 2009, 19:11

gamma e punto di tangenza

Messaggio da danielf » 23 dic 2009, 13:46

dato un punto S esterno ad una circonferenza $ \gamma $di raggio 1 si tracci una retta tangente a $ \gamma $ si indichi con T il punto di tangenza.Al variare di un punto P su $ \gamma $,il baricentro del triangolo PST descrive una curva $ \gamma' $.Qual è il rapporto tra la lunghezza di $ \gamma' $ e quella di $ \gamma $?

flexwifi
Messaggi: 90
Iscritto il: 11 giu 2007, 22:04

Messaggio da flexwifi » 23 dic 2009, 15:44

Io l'ho risolto con la geometria analitica.
Ponendo il centro della circonferenza $ \displaystyle \gamma $ nell'origine degli assi cartesiani possiamo dire senza perdere di generalita' che le cordinate dei vertici del triangolo PST valgono:
P(a,b), T(1,0), S(1,c) dove a e b soddifano l'equazione: $ \displaystyle a^2+b^2=1 $ e c e' un reale qualsiasi diverso da 0.
Quindi il baricentro avra' coordinate:
G($ \displaystyle \frac{a+2}{3} $, $ \displaystyle \frac{b+c}{3} $).
e descrivera' una circonferenza di equazione:
$ \displaystyle(x-\frac{2}{3})^2+(y-\frac{c}{3})^2=\frac{1}{9} $
Quindi il rapporto tra le lunghezze delle curve $ \displaystyle \gamma' $ e $ \displaystyle \gamma $ dovrebbe essere $ \displaystyle \frac{1}{3} $

danielf
Messaggi: 203
Iscritto il: 17 set 2009, 19:11

Messaggio da danielf » 23 dic 2009, 16:12

con che criterio dai le coordinate?perchè esprimi il baricentro con quelle coordinate?

flexwifi
Messaggi: 90
Iscritto il: 11 giu 2007, 22:04

Messaggio da flexwifi » 23 dic 2009, 16:30

Le coordinate le ho scelte mettendomi nel caso piu' semplice. Comunque non perdi di generalita' perche' puoi fissare gli assi cartesiani in un modo tale da ricondurti sempre al caso sopra descritto.

Per quanto riguarda le coordinate del baricentro e' una formula nota:

G($ \displaystyle \frac{(x_A+x_B+x_C)}{3} $,$ \displaystyle \frac{(y_A+y_B+y_C)}{3} $)

dove A, B e C sono i vertici di un triangolo nel piano e qui puoi trovare una dimostrazione:

http://it.answers.yahoo.com/question/in ... 614AABoZxc
Ultima modifica di flexwifi il 23 dic 2009, 16:34, modificato 1 volta in totale.

Matemick
Messaggi: 16
Iscritto il: 20 dic 2009, 21:59

Messaggio da Matemick » 23 dic 2009, 16:32

È la regola del baricentro di un triangolo in un piano cartesiano
il baricentro di una triangolo A$ (x_a; y_a) $ B$ (x_b; y_b) $ C$ (x_c;y_c) $ ha $ $\frac{x_a+x_b+x_c} 3 $ come ascissa e$ $ \frac{y_a+y_b+y_c}3 $ come ordinata


edit: abbiamo postato insieme :lol:

Rispondi