n punti, una retta

Rette, triangoli, cerchi, poliedri, ...
L'ale
Messaggi: 49
Iscritto il: 14 set 2007, 13:10
Località: Pistoia

n punti, una retta

Messaggio da L'ale » 01 set 2008, 18:10

Siano dati n punti nel piano, con la proprietà che presi comunque due di essi ne esiste un terzo giacente sulla retta passante per i primi due.
Dimostrare che allora tutti gli n punti stanno sulla stessa retta.

Avatar utente
pa
Messaggi: 81
Iscritto il: 14 feb 2008, 16:14
Località: Genova

Messaggio da pa » 01 set 2008, 18:22

proviamo per induzione:
per $ n=3 $ e' evidente che i tre punti sono su un unica retta un quanto i primi 2 definiscono un'unica retta e il terzo quindi deve stare su quella retta' per la proprieta'.
aggiungiamo un punto P a un sistema di n-1 punti tutti sulla stessa retta mantenendo la proprieta' del problema: prendiamo in esame questo punto piu' un altro A preso a caso tra gli n-1. deve esistere un punto B sulla retta di AP appartenente agli n-1. quindi la retta di AP e' la stessa di AB che per ipotesi e' la stessa di tutti gli n-1 punti.
paolo

Avatar utente
salva90
Messaggi: 1314
Iscritto il: 19 ott 2006, 18:54
Località: Carrara

Messaggio da salva90 » 01 set 2008, 18:40

pa ha scritto:proviamo per induzione:
per $ n=3 $ e' evidente che i tre punti sono su un unica retta un quanto i primi 2 definiscono un'unica retta e il terzo quindi deve stare su quella retta' per la proprieta'.
aggiungiamo un punto P a un sistema di n-1 punti tutti sulla stessa retta mantenendo la proprieta' del problema: prendiamo in esame questo punto piu' un altro A preso a caso tra gli n-1. deve esistere un punto B sulla retta di AP appartenente agli n-1. quindi la retta di AP e' la stessa di AB che per ipotesi e' la stessa di tutti gli n-1 punti.
è il classico esempio di quando l'induzione fallisce: non è possibile indurre sulle configurazioni
[url=http://www.myspace.com/italiadimetallo][img]http://img388.imageshack.us/img388/4813/italiadimetallogn7.jpg[/img][/url]

L'ale
Messaggi: 49
Iscritto il: 14 set 2007, 13:10
Località: Pistoia

Messaggio da L'ale » 01 set 2008, 18:44

e allora come si può risolvere?

pic88
Messaggi: 741
Iscritto il: 16 apr 2006, 11:34
Località: La terra, il cui produr di rose, le dié piacevol nome in greche voci...

Messaggio da pic88 » 01 set 2008, 19:01

Beh, supponiamo che non stiano tutti su una stessa retta. Esiste un minimo tra i valori non nulli che misurano la distanza tra un punto ed una retta che appartenga alla configurazione (cioè che passi per 2 degli n punti). Poi si fanno un po' di osservazioni e si deduce che quello non poteva essere il minimo, e si conclude.

pic88
Messaggi: 741
Iscritto il: 16 apr 2006, 11:34
Località: La terra, il cui produr di rose, le dié piacevol nome in greche voci...

Messaggio da pic88 » 01 set 2008, 20:05

Ah, il motivo per cui non funziona l'induzione è che dati n punti che soddisfano le ipotesi, non è detto che un sottoinsieme fatto da n-1 punti ancora le soddisfi...

Avatar utente
pa
Messaggi: 81
Iscritto il: 14 feb 2008, 16:14
Località: Genova

Messaggio da pa » 01 set 2008, 20:07

salva90 ha scritto:
pa ha scritto:proviamo per induzione:
per $ n=3 $ e' evidente che i tre punti sono su un unica retta un quanto i primi 2 definiscono un'unica retta e il terzo quindi deve stare su quella retta' per la proprieta'.
aggiungiamo un punto P a un sistema di n-1 punti tutti sulla stessa retta mantenendo la proprieta' del problema: prendiamo in esame questo punto piu' un altro A preso a caso tra gli n-1. deve esistere un punto B sulla retta di AP appartenente agli n-1. quindi la retta di AP e' la stessa di AB che per ipotesi e' la stessa di tutti gli n-1 punti.
è il classico esempio di quando l'induzione fallisce: non è possibile indurre sulle configurazioni
Scusa ti puoi chiarire meglio? in particolare non ho capito perche' l'induzione fallisce in questo caso...
paolo

pic88
Messaggi: 741
Iscritto il: 16 apr 2006, 11:34
Località: La terra, il cui produr di rose, le dié piacevol nome in greche voci...

Messaggio da pic88 » 01 set 2008, 20:23

pa ha scritto:.
aggiungiamo un punto P a un sistema di n-1 punti tutti sulla stessa retta mantenendo la proprieta' del problema:
Il fatto è che l'ipotesi induttiva non dice "un insieme di n-1 punti è fatto di punti allineati", bensì "un'insieme di n-1 tali che nessuna retta ne contenga esattamente 2 è fatto di allineati"... ora, se tu parti da un insieme di n punti, chi ti dice che togliendone 1 ne restino altri n-1 con quella proprietà?

P.S: non riesco a trovare il link alla discussione che tempo fa c'è stata su questo problema

Avatar utente
mod_2
Messaggi: 726
Iscritto il: 18 ago 2007, 20:26
Località: In fondo a destra

Messaggio da mod_2 » 01 set 2008, 20:35

pic88 ha scritto: P.S: non riesco a trovare il link alla discussione che tempo fa c'è stata su questo problema
Se non ricordo male nella lezione "Preliminari" del Senior dell'anno scorso si è parlato di questo problema...
Appassionatamente BTA 197!

EvaristeG
Site Admin
Messaggi: 4782
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Messaggio da EvaristeG » 01 set 2008, 21:10

si chiama teorema di sylvester e, tra corsi e ricorsi storici, è stato un argomento di questo forum diverse volte, è stato spesso citato come esempio di cattiva induzione, è stato anche nel test di ammissione sns per l'anno 2004/2005, mi pare.
La soluzione giusta è già stata un po' troppo stringatamente esposta ed è quella di considerare la minima distanza tra le coppie punto retta.

WiZaRd
Messaggi: 129
Iscritto il: 22 mag 2008, 10:12

Messaggio da WiZaRd » 01 set 2008, 23:04

Posso dire che io continuo a non capire perché l'induzione non funziona?
Il principio di induzione dice di assumere che l'asserto sia valido per $ n $ e poi provare che è vero per $ n+1 $... sono confuso: cos'è che mi impedisce di assumere che l'asserto vero per $ n $?
"La Morte sorride a tutti: un uomo non può fare altro che sorriderle di rimando" (Marco Aurelio)

Avatar utente
julio14
Messaggi: 1208
Iscritto il: 11 dic 2006, 18:52
Località: Berlino

Messaggio da julio14 » 01 set 2008, 23:45

Qual è la tua tesi? che ogni configurazione di n+1 punti tali che ogni retta congiungente due punti contiene almeno 3 punti, ha tutti i punti su una retta. Hai come ipotesi che questo è vero per n. Quando puoi applicare l'induzione? quando a partire dalle configurazioni di n punti che rispettano le ipotesi, aggiungendo un punto, puoi raggiungere tutte le configurazioni di n+1 che rispettano le ipotesi. Allora ovviamente l'induzione funziona. Il problema è che questa cosa non è così scontata: infatti presa una configurazione di n+1 punti che rispetta le ipotesi, non è detto che, tolto un punto P qualunque, troviamo una configurazione che rispetta le ipotesi: magari P stava su una retta con esattamente 3 punti, quindi tolto P quella retta ha solo 2 punti. Ma se la configurazione di n punti che abbiamo trovato non rispetta le ipotesi, allora i punti non stanno tutti su una retta, e quindi ovviamente neanche gli n+1 punti vi stanno.

WiZaRd
Messaggi: 129
Iscritto il: 22 mag 2008, 10:12

Messaggio da WiZaRd » 02 set 2008, 00:16

julio14 ha scritto:Qual è la tua tesi? che ogni configurazione di n+1 punti tali che ogni retta congiungente due punti contiene almeno 3 punti, ha tutti i punti su una retta. Hai come ipotesi che questo è vero per n. Quando puoi applicare l'induzione? quando a partire dalle configurazioni di n punti che rispettano le ipotesi, aggiungendo un punto, puoi raggiungere tutte le configurazioni di n+1 che rispettano le ipotesi. Allora ovviamente l'induzione funziona. Il problema è che questa cosa non è così scontata: infatti presa una configurazione di n+1 punti che rispetta le ipotesi, non è detto che, tolto un punto P qualunque, troviamo una configurazione che rispetta le ipotesi: magari P stava su una retta con esattamente 3 punti, quindi tolto P quella retta ha solo 2 punti. Ma se la configurazione di n punti che abbiamo trovato non rispetta le ipotesi, allora i punti non stanno tutti su una retta, e quindi ovviamente neanche gli n+1 punti vi stanno.
Non capisco: se per ipotesi prendiamo una configurazione di $ n $ punti che rispetta le ipotesi, perché dopo non le rispetta più?
E il principio di induzione non mi dice di aggiungere un punto? Perché dagli $ n $ punti togli un punto, non dovresti aggiungerlo?

Chiedo scusa se le domande vi sembrano deficienti, ma veramente non vi seguo...
"La Morte sorride a tutti: un uomo non può fare altro che sorriderle di rimando" (Marco Aurelio)

Avatar utente
julio14
Messaggi: 1208
Iscritto il: 11 dic 2006, 18:52
Località: Berlino

Messaggio da julio14 » 02 set 2008, 00:24

L'induzione in realtà non ti dice di aggiungere un punto a partire da n, ma ti dice: se, a partire da n+1, tolto un punto, la configurazione rispetta le ipotesi, allora essa rispetta anche la tesi, e rimettendo il punto si nota che anche la configurazione a n+1 deve rispettare la tesi. Il problema è che, tolto un punto, non è detto che la configurazione a n rispetti le ipotesi.

WiZaRd
Messaggi: 129
Iscritto il: 22 mag 2008, 10:12

Messaggio da WiZaRd » 02 set 2008, 00:36

Ma io non devo assumere come ipotesi induttiva il fatto che la configurazione a $ n $ rispetti le ipotesi?

Voglio dire, quando provo che $ [tex] $\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$, nella dimostrazione del passo induttivo, io assumo come ipotesi induttiva la validità della formula per $ n $. Quì tu mi dici che da $ n+1 $ punti che rispettano le ipotesi se ne tolgo uno non ho la sicurezza che le ipotesi siano rispettate, ma l'ipotesi induttiva non mi dice proprio che per $ n $ (e cioè tolto quel punto) l'asserto è buono?

P.S.
Io intanto vado a nanna. Grazie per la disponibilità e scusami per il tempo che ti porto via con queste domande. Buona notte.
"La Morte sorride a tutti: un uomo non può fare altro che sorriderle di rimando" (Marco Aurelio)

Rispondi