Funzionale naturale

Polinomi, disuguaglianze, numeri complessi, ...
Avatar utente
salva90
Messaggi: 1314
Iscritto il: 19 ott 2006, 18:54
Località: Carrara

Messaggio da salva90 » 17 ago 2007, 20:46

azz... devo ammettere che in effetti il problema sollevato da piva persiste :oops: :oops:

comunque la riguarderò, chissà che non esca qualcosa di buono :)
[url=http://www.myspace.com/italiadimetallo][img]http://img388.imageshack.us/img388/4813/italiadimetallogn7.jpg[/img][/url]

Avatar utente
pi_greco_quadro
Messaggi: 158
Iscritto il: 01 gen 1970, 01:00
Località: Verona

Messaggio da pi_greco_quadro » 18 ago 2007, 12:27

Questa la metto qui per Salva90 :lol: ..

Supponiamo che la nostra funzione non sia costante

Allora, essendo l'insieme dei naturali ben ordinato, diciamo di poter scegliere $ m,n $ e tali che $ f(m) < f(n) $ ed inoltre la quantità $ f(n)-f(m) $ sia la minima assumibile.

Bene, allora vale la seguente

$ \displaystyle f(m)=\frac{mf(m)+nf(m)}{m+n}<\frac{mf(n)+nf(m)}{m+n} $$ \displaystyle=f(m^2+n^2)<\frac{mf(n)+nf(n)}{m+n}=f(n) $

Ma allora $ f(m^2+n^2)-f(m)<f(n)-f(m) $ Assurdo. Quindi $ f(.) $ è una funzione costante.

P.S. Aggiungo che quando ho pensato alla soluzione mi ricordavo vagamente di questo approccio applicato ad un problema abbastanza datato su questo forum, non vorrei mai fosse proprio lo stesso :oops: , beh in tal caso fa sempre bene rispolverare le vecchie idee.. Saluti

EDIT: dovrei aver sistemato i miei piccoli errorini. Ora dovrebbe funzionare
Ultima modifica di pi_greco_quadro il 18 ago 2007, 13:36, modificato 1 volta in totale.
Disco es cultura, metal es religion (Metal py)
"Ti credevo uno stortone.. e pure vecchio.. (Lei)"

Spider
Messaggi: 147
Iscritto il: 01 gen 1970, 01:00
Località: San Cono (CT)
Contatta:

Messaggio da Spider » 18 ago 2007, 13:03

Molto bella, a parte un paio di obiezioni che ti faccio:
pi_greco_quadro ha scritto:Allora, essendo l'insieme dei naturali ben ordinato, diciamo di poter scegliere $ m<n $ e tali che $ f(m) < f(n) $ ed inoltre la quantità $ f(n)-f(m) $ sia la minima assumibile tra tutti gli elementi dell'immagine di $ f(.) $.
Non vorrei sbagliare, ma ciò non è sempre possibile. Controesempio: una qualsiasi funzione non costante e debolmente decrescente. In più penso che vorresti richiedere $ f(n) - f(m) $ minimo tra gli $ m $, $ n $ che soddisfano le due ipotesi precedenti, non nell'immagine di f (che di nuovo potrebbe non essere possibile).
Non penso sia un grosso problema, ma perdi un paio di punti :P

Spider

Spider
Messaggi: 147
Iscritto il: 01 gen 1970, 01:00
Località: San Cono (CT)
Contatta:

Messaggio da Spider » 21 ago 2007, 03:09

Scrivo anche la mia soluzione, anche se è meno brillante.

Con $ m = 0, n = 1 $ si ottiene $ f(0) = f(1) $. Pongo $ f(1) = k $.

Sia $ t $ un numero naturale, e sia $ f(t) = h $. Si vede facilmente che $ f(a_1) = f(1) = k $. Posto $ a_0 = t $ e $ a_{n+1} = a_n^2 + 1 $, si ha che $ f(a_0) = h $, e

$ \displaystyle f(a_{n+1}) = f(a_n^2 + 1) = \frac{ka_n + f(a_n)}{a_n + 1} = k + \frac{f(a_n) - k}{a_n+1} $.

Posto, infine, $ g(n) = f(a_n) - k $, allora $ g(0) = h - k $, e dalla ricorrenza precedente si ottiene che $ g(n+1) = \frac{g(n)}{a_n + 1} $. Da ciò, si deduce facilmente per induzione che

$ \displaystyle g(n) = \frac{h - k}{(a_1 + 1)(a_2 + 1)\cdot\cdot\cdot(a_n + 1)} $

Ma poiché $ g(n) $ ha valori interi e il denominatore diventa arbitrariamente grande al crescere di $ n $ (mentre il numeratore è costante), segue che $ g(n) = 0 $ per $ n $ sufficientemente grande, e quindi $ h = k $. Questo implica che ogni soluzione della funzionale è una funzione costante; è banale verificare che, effettivamente, tutte le costanti sono soluzioni dell'equazione.

Spider

PS: pi_greco_quadro: non è grave, ma, per usare il buon ordinamento, trascuri ancora di dimostrare che l'insieme degli m, n che soddisfano le ipotesi è non vuoto.

Rispondi