SNS 1972-1973

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
Avatar utente
cippo90
Messaggi: 23
Iscritto il: 15 lug 2006, 10:29
Località: Roè Volciano (Bs)

SNS 1972-1973

Messaggio da cippo90 » 09 ago 2006, 19:08

Non so se è il posto giusto per mettere questo esercizio, comunque...
Dire se esistono numeri reali $ $x$ $ che verificano l'equazione
$ $x^2+2x+2^{-x}=0$ $
"Lasciate ogne speranza, voi ch'entrate."

Avatar utente
Franchifis
Messaggi: 149
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da Franchifis » 09 ago 2006, 20:18

Deve essere $ x^2+2x=-2^{-x} $

$ x>0 \Longrightarrow x^2+2x>0 $ e $ -2^{-x}<0 $

$ x=0 \Longrightarrow x^2+2x=0 $ e $ -2^{-x}=-1 $

$ x<0 \Longrightarrow x^2+2x \geq -1 $ e $ -2^{-x}<-1 $

Quindi l'equazione non ha soluzioni.

EvaristeG
Site Admin
Messaggi: 4791
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Messaggio da EvaristeG » 09 ago 2006, 21:00

Direi che non è proprio il posto giusto ... non mi sembra un esercizio riguardante numeri interi, primi, divisibilità e simili ... piuttosto è un'equazione da risolvere, quindi algebra ... leggi le faq di mindflyer su dove postare i post nel comitato di accoglienza...

Avatar utente
evans
Messaggi: 115
Iscritto il: 21 nov 2005, 20:52

Messaggio da evans » 25 ago 2006, 18:48

Lo si ottiene anche graficamente con itersezione tra parabola ed esponenziale.
In ogni caso il minimo(o il vertice della parabola con la concavità verso l'alto) della parabola e la sua intersezione con O(0,0) confrontate con le intersezioni con gli assi dell'esponenziale non consentono intersezione.

Rispondi