USA TSTST 2016 1

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
Rho33
Messaggi: 89
Iscritto il: 16 set 2014, 13:15

USA TSTST 2016 1

Messaggio da Rho33 » 16 ago 2016, 17:44

Ecco un problema carino che serve (a mio parere) a capire un poco come funzionano le cose in due variabili!

Siano $A=A(x,y)$ e $B=B(x,y)$ due polinomi a coefficienti reali in due variabili. Supponiamo che $A(x,y)/B(x,y)$ sia un polinomio in $x$ per infiniti valori di $y$ e sia un polinomio in $y$ per infiniti valori di $x$. Dimostrare che $B \mid A$, cioè esiste un polinomio a coefficienti reali $C$ tale che $A=B \cdot C$.

spugna
Messaggi: 413
Iscritto il: 19 mar 2009, 22:18
Località: Forlì

Re: USA TSTST 2016 1

Messaggio da spugna » 11 ott 2017, 09:48

Piccolo hint:
Testo nascosto:
Divisioni con resto rispetto a entrambe le variabili.
"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero 100, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)

Maledetti fisici! (cit.)

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 3 ospiti