PreIMO 2005

Polinomi, disuguaglianze, numeri complessi, ...
toti96
Messaggi: 53
Iscritto il: 02 nov 2012, 20:17

PreIMO 2005

Messaggio da toti96 » 02 apr 2013, 01:41

Dati $ x,y $ reali positivi tali che $ x+y=2 $ dimostrare che :

$ x^2y^2(x^2+y^2)\leq 2 $.(è facile però ha vari approcci ed è carino :D ).

Gi.
Messaggi: 153
Iscritto il: 18 dic 2012, 16:45

Re: PreIMO 2005

Messaggio da Gi. » 02 apr 2013, 10:12

E' davvero un PreIMO? Boh, credo di esserci riuscito:

$ (xy)^2((x+y)^2-2xy) \le2 $
$ (xy)^2(4-2xy)\le2 $
$ 4(xy)^2-2(xy)^3 \le 2 $
$ (xy)^2(4-2xy)\le 2 $

e abbiamo finito, perchè il massimo di $ xy $, con la condizione $ x+y=2 $, è $ 1 $, e andando a sostituire dà proprio $ 2 $.

p.s. i vari $ \le $ sono da intendere come "interrogativi" e il massimo l'ho trovato per GM-AM sulla coppia $ (x,y) $.
Ultima modifica di Gi. il 02 apr 2013, 12:23, modificato 3 volte in totale.

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: PreIMO 2005

Messaggio da jordan » 02 apr 2013, 10:23

Gi. ha scritto:e abbiamo finito, perchè il minimo di $ xy $, con la condizione $ x+y=2 $, è $ 1 $
Sicuro sia il minimo? :?

Ps. Lasciando perdere il pezzo seguente, che è una cubica in $z:=xy$..
The only goal of science is the honor of the human spirit.

Gi.
Messaggi: 153
Iscritto il: 18 dic 2012, 16:45

Re: PreIMO 2005

Messaggio da Gi. » 02 apr 2013, 10:37

Pensavo di aver sbagliato l' approccio e ho ricontrollato venti volte, fino a quando, perdonatemi lo strafalcione, non mi sono accorto che l' unico problema è che $ 1 $ è il massimo, non il minimo :lol:
Grazie Jordan.

p.s. ma siamo sicuri funzioni ora?

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: PreIMO 2005

Messaggio da jordan » 02 apr 2013, 10:39

Gi. ha scritto:p.s. ma siamo sicuri funzioni ora?
Ancora no :roll: chi ti assicura è LHS è monotona?
The only goal of science is the honor of the human spirit.

wall98
Messaggi: 167
Iscritto il: 27 mar 2013, 11:23
Località: Roma

Re: PreIMO 2005

Messaggio da wall98 » 02 apr 2013, 12:16

provo io,anche se è probabile che abbia sbagliato poiche di teoria ne so pochissima
dato che non so cosa significa quel "LHS" riparto da capo cosi da evitare malintesi...
la disuguaglianza di partenza è questa $ \displaystyle x^2y^2(x^2+y^2)\le2 $
come fatto da Gi si arriva ad $ \displaystyle (xy)^2(4-2xy)\le2 $
si raccoglie $ \displaystyle (xy)^2(2-xy)2\le2 $
si divide $ \displaystyle (xy)^2(2-xy)\le1 $
ora dobbiamo massimizzare $ \displaystyle (xy)^2(2-xy) $
questo si massimizza quando i termini sono uguali,notiamo che possiamo riscrivere come...
$ \displaystyle (xy)^2=(2-xy) $ ma anche come $ \displaystyle (xy)(xy)(2-xy) $,ora xy è sicuramente uguale ad xy,quindi $ \displaystyle xy=2-xy $
la cui soluzione è xy=1
quindi anche la disuguaglianza di partenza ha l'uguaglianza solo quando xy=1
ora procedendo a ritroso dovremmo poter dimostrare effettivamente la tesi,se c'è qualche errore o imprecisione(molto probabile) chiedo perdono,ciao :)
Il problema non è il problema, il problema sei tu.

toti96
Messaggi: 53
Iscritto il: 02 nov 2012, 20:17

Re: PreIMO 2005

Messaggio da toti96 » 02 apr 2013, 12:32

bon io ho fatto così:per AM-GM ho $ \displaystyle \frac{x+y}{2}\geq \sqrt{xy} $ cioè $ \displaystyle 1\geq \sqrt{xy} $ cioè $ \displaystyle 1\geq xy $. riscriviamo allora $ \displaystyle xy=\frac{1}{z} $ con $ z\geq 1 $ . ora possiamo riscrivere il testo come :
$ \displaystyle \frac{1}{z^2}(4-\frac{2}{z})\leq 2 $ cioè $ \displaystyle \frac {4z-2}{z^3}\leq 2 $. dividiamo per $ 2 $ e moltiplichiamo per $ z^3 $ e abbiamo :

$ 2z-1 -z^3\leq 0 $. ora per le condizioni iniziali poniamo $ z=1+k $ con $ k\geq 0 $ e otteniamo $ -k^3-k-3k^2\leq 0 $ che si massimizza per $ k=0 $ cioè $ z=1 $ cioè $ xy=1 $. mo quindi l' $ LHS $ si massimizza per $ xy=1 $ che sostituito dà $ 2\leq 2 $. in tutti gli altri casi il termine a sinistra è minore e quindi la disuguaglianza è dimostrata.

wall98
Messaggi: 167
Iscritto il: 27 mar 2013, 11:23
Località: Roma

Re: PreIMO 2005

Messaggio da wall98 » 02 apr 2013, 12:34

quindi è giusto?? :D :D
Il problema non è il problema, il problema sei tu.

Gi.
Messaggi: 153
Iscritto il: 18 dic 2012, 16:45

Re: PreIMO 2005

Messaggio da Gi. » 02 apr 2013, 12:42

Faccio un tentativo per dimostrare che il LHS (il membro di sinistra della disequazione) decresce al diminuire di $ xy $, con xy che varia in $ (0,1] $, chiaramente un $ xy $ compreso tra $ 0 $ e $ 1 $ è una frazione, diciamo $ xy=\frac{1}{z} $, allora sostituendo si ha:

$ \displaystyle 2\cdot\frac{1}{z^2}\cdot\frac{2z-1}{z}=\frac{2(2z-1)}{z^3} $

credo che ora sia evidente che all' aumentare di $ z $ la suddetta espressione diminuisce di valore, ma $ z=\frac{1}{xy} $, quindi $ z $ aumenta al diminuire di $ xy $.

Funziona?

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: PreIMO 2005

Messaggio da jordan » 02 apr 2013, 13:20

wall98 ha scritto:ora dobbiamo massimizzare $ \displaystyle (xy)^2(2-xy) $
questo si massimizza quando i termini sono uguali
Perchè? E' questo il problema..
The only goal of science is the honor of the human spirit.

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: PreIMO 2005

Messaggio da jordan » 02 apr 2013, 13:24

toti96 ha scritto:Ora per le condizioni iniziali poniamo $ z=1+k $ con $ k\geq 0 $ e otteniamo $ -k^3-k-3k^2\leq 0 $ che si massimizza per $ k=0 $
Bien, questa è corretta.
Gi. ha scritto:credo che ora sia evidente che all' aumentare di $ z $ la suddetta espressione diminuisce di valore
No, non è evidente, a meno che non mi sia perso qualcosa per strada :roll:

Devi mostrare che \[ \frac{2}{z^2}-\frac{1}{z^3} \] è monotona se $z \ge 1$.. come procedi?
The only goal of science is the honor of the human spirit.

wall98
Messaggi: 167
Iscritto il: 27 mar 2013, 11:23
Località: Roma

Re: PreIMO 2005

Messaggio da wall98 » 02 apr 2013, 14:55

jordan ha scritto:
wall98 ha scritto:ora dobbiamo massimizzare $ \displaystyle (xy)^2(2-xy) $
questo si massimizza quando i termini sono uguali
Perchè? E' questo il problema..
Guarda io ho ragionato cosi..
ho ridotto la disuguaglianza di partenza $ \displaystyle x^2y^2(x^2+y^2)\le2 $ in $ \displaystyle (xy)^2 (2-xy)\le1 $, sempre con la condizione x+y=2

ora il prodotto $ \displaystyle (xy)^2(2-xy) $ deve massimizzarsi e diventare uguale ad 1,e cio è equivalente a diventare uguale a 2 nelle prima disuguaglianza (sono passaggi algebrici,ho solo spostato il problema!e per questo se si massimizza una,si massimizza anche l'altra)
per massimizzare il prodotto i termini devono essere uguali e poi tutto quello che ho scritto ecc.
Il problema non è il problema, il problema sei tu.

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: PreIMO 2005

Messaggio da jordan » 02 apr 2013, 15:51

wall98 ha scritto:ho ridotto la disuguaglianza di partenza $ \displaystyle x^2y^2(x^2+y^2)\le2 $ in $ \displaystyle (xy)^2 (2-xy)\le1 $, sempre con la condizione x+y=2
Fin qui siamo d'accordo.
wall98 ha scritto:ora il prodotto $ \displaystyle (xy)^2(2-xy) $ deve massimizzarsi
Ok anche qui.
wall98 ha scritto:per massimizzare il prodotto i termini devono essere uguali e poi tutto quello che ho scritto ecc.
Dici che affinchè $x^2y^2(2-xy)$ is massimizzi, sotto il vincolo $0\le xy \le 1$, dobbiamo avere $xy=xy=2-xy$.

Ammesso che questo fatto è vero, perchè deve valere quell'uguaglianza?
The only goal of science is the honor of the human spirit.

wall98
Messaggi: 167
Iscritto il: 27 mar 2013, 11:23
Località: Roma

Re: PreIMO 2005

Messaggio da wall98 » 02 apr 2013, 17:54

jordan ha scritto:
wall98 ha scritto:ho ridotto la disuguaglianza di partenza $ \displaystyle x^2y^2(x^2+y^2)\le2 $ in $ \displaystyle (xy)^2 (2-xy)\le1 $, sempre con la condizione x+y=2
Fin qui siamo d'accordo.
wall98 ha scritto:per massimizzare il prodotto i termini devono essere uguali e poi tutto quello che ho scritto ecc.
Dici che affinchè $ x^2y^2(2-xy) $ is massimizzi, sotto il vincolo $ 0\le xy \le 1 $, dobbiamo avere $ xy=xy=2-xy $.
Ammesso che questo fatto è vero, perchè deve valere quell'uguaglianza?
se come hai scritto anche tu le due disuguaglianze sono fondamentalmente la stessa,allora il valore xy che fa massimizzare uno fa massimizzare anche l'altro,
quindi ho cercato quando la disuguaglianza che ho trovato si massimizza,
e qui ho commesso un grave errore,ho cercato di massimizzare come se $ \displaystyle (xy)^2 (2-xy) $ avesse somma costante,invece bisogna massimizzare la disuguaglianza $ \displaystyle (xy)^2 (2-xy) $ che ha come somma costante $ \displaystyle xy+xy+2-xy=2+xy $ quindi sapendo che piu è grande la somma tra gli addendi piu è grande il loro prodotto,xy deve essere piu grande possibile,cioe $ \displaystyle xy=1 $ (poiche in un prodotto in cui gli addendi hanno somma costante,si ottiene il massimo quando gli addendi sono uguali)quindi ora sappiamo che dobbiamo massimizzare $ \displaystyle (xy)^2(2-xy) $ sapendo che la somma di $ \displaystyle (xy)+(xy)+(2-xy)=3 $,come gia detto il prodotto massimo(con somma costante) si ottiene quando i termini sono uguali tra loro,da cui segue xy=1
e se il massimo è minore di 2,allora anche tutti gli altri possibili valori lo sono.
se non va bene cosi,non so piu che pesci prendere....
Il problema non è il problema, il problema sei tu.

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: PreIMO 2005

Messaggio da jordan » 02 apr 2013, 18:14

Sì, l'idea così va bene, ma attento a quando scrivi che $xy+xy+2-xy$ ha somma costante, che non è vero; prova a risolvere questo, cosi' vedi a dove volevo arrivare:

"Siano dati $a,b,c$ reali positivi con somma $1$. Quanto vale al massimo $a^2bc$?"
The only goal of science is the honor of the human spirit.

Rispondi