Fattorizzazione polinomio di 8 grado

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Fattorizzazione polinomio di 8 grado

Messaggio da LeZ » 05 gen 2013, 00:14

Fattorizzare in $ \mathbb{Z} $:

$ a) x^8-98x^4+1 $

$ b) x^8+98x^4+1 $
Ultima modifica di LeZ il 07 gen 2013, 20:28, modificato 1 volta in totale.

Gi.
Messaggi: 153
Iscritto il: 18 dic 2012, 16:45

Re: Fattorizzazione polinomio di 8 grado

Messaggio da Gi. » 05 gen 2013, 15:05

a) Riscrivo come

$ (x^4)^2 -98x^4 +1 $

pongo $ x^4=y $, quindi

$ y^2 -98y +1 $

Questo polinomio non ha radici razionali, quindi non è fattorizzabile nei razionali o negli interi, per cui non è fattorizzabile nemmeno il polinomio di partenza.
Potrei fare un discorso analogo per il caso b.

Spero di non aver detto troppe fesserie.

Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Re: Fattorizzazione polinomio di 8 grado

Messaggio da jordan » 05 gen 2013, 15:46

"Fattorizzare" è un po' generica come domanda, se non ci dici dove..
The only goal of science is the honor of the human spirit.

toti96
Messaggi: 53
Iscritto il: 02 nov 2012, 20:17

Re: Fattorizzazione polinomio di 8 grado

Messaggio da toti96 » 05 gen 2013, 16:02

sul numero b) sono d'accordo pure io non vedo come possa essere fattorizzato nei reali però può essere che sbagli .sul punto a) io invece ho agito così $ x^8-98x^4 +1=x^8-98x^4+1-2x^4+2x^4=(x^4+1)^2-100x^4=(x^4+10x^2+1)(x^4-10x^2+1) $.evidentemente il termine nella prima parentesi non è ulteriormente fattorizzabile mentre per il termine nella seconda parentesi ho supposto $ x^2=a $ e per la formula risolutiva delle equazioni di secondo grado ho $ a=\frac {10+-\sqrt{96}}{2} $ e qui mi sorge un dubbio ma per fattorizzare devo scrivere solo polinomi a coefficienti razionali ???scusate la mia ignoranza radicata e basilare spero che almeno questa prima parte vada bene XD

andreac
Messaggi: 50
Iscritto il: 12 set 2008, 17:16

Re: Fattorizzazione polinomio di 8 grado

Messaggio da andreac » 06 gen 2013, 12:40

Condensado milioni di pagine di conti- che vi risparmio- (ci sono andato giù subito di forza bruta), partendo da:
$ x^{8}+98x^{4}+1 = (x^{4}+Ax^{3}+Bx^{2}+Cx+1)(x^{4}+Dx^{3}+Ex^{2}+Fx+1) $

si vede che (se tale fattorizzazione fosse ammissibile) deve essere
$ D = -A $
$ C = -F $

Il che porta a
$ x^{8}+98x^{4}+1 = (x^{4}+Ax^{3}+Bx^{2}+Cx+1)(x^{4}-Ax^{3}+Ex^{2}-Cx+1) $

Altra rata di conti e si ottiene:
$ x^8 -Ax^7+Ex^6-Cx^5+x^4+ $
$ Ax^7 -A^2x^6+AEx^5-ACx^4+Ax^3+ $
$ ... $
$ x^4-Ax^3+Ex^2-Cx+1 $

scritto per comodità in quel modo perché sulle diagonali troviamo ovviamente potenze analoghe di x e si nota subito (dalle V e III potenze) che
$ E = B $

Restano quindi 3 equazioni a sistema
$ 2B-A^2 = 0 $
$ 2B - C^2 = 0 $
$ -2AC+B^2=96 $

ovvero dalle prime due
$ C=\pm A $

e togliendo i conti dei vari tentativi, per C = -A si ha
$ B = 8 $
$ A = \pm 4 $
$ C= \mp 4 $

e la fattorizzazione è, salvo orrori di sopra
$ (x^4+4x^3+8x^2-4x+1)(x^4-4x^3+8x^2+4x+1) $

Esiste un modo meno contoso, come per il primo caso?

EvaristeG
Site Admin
Messaggi: 4777
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Fattorizzazione polinomio di 8 grado

Messaggio da EvaristeG » 07 gen 2013, 00:28

@jordan: pignoooooolo

@Gi.: quello che hai fatto dice che il polinomio dato non si può scrivere come prodotto di due fattori della forma $x^4+q$ con $q$ razionale... ma non è l'unica fattorizzazione possibile, no?

@toti96: "fattorizzabile" non equivale a "con radici" ... il polinomio $x^8+98x^4+1$ è ovviamente sempre positivo e quindi senza radici sui reali, ma non è detto che non sia fattorizzabile, ad esempio nel prodotto di 4 polinomi di secondo grado, tutti e 4 con discriminante minore di 0. (Anzi, ogni polinomio reale si fattorizza, sui reali, in fattori di grado 1 o 2...che poi questa fattorizzazione si possa trovare a mano a partire da uno specifico polinomio è un altro paio di maniche.
E non è tua ignoranza, ma è quello che dice jordan ... il "dove stanno i coefficienti" dovrebbe essere una parte del testo del problema.
Però a questo punto potresti vedere un pochino anche come si fattorizza il polinomio del punto a) sui reali... in particolare, $x^4+10x^2+1$ si può ancora fattorizzare, pur non avendo radici.
Per darti un esempio che non c'entra molto, $x^4+1$ non ha radici sui reali ma $x^4+1=x^4+2x^2+1-2x^2=(x^2+1)^2-2x^2=(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}x+1)$ ... o più semplicemente $x^4+2x^2+1$ non ha nemmeno lui radici reali, ma è uguale a $(x^2+1)^2$ e dunque fattorizzabile.

@andreac: il risultato è giusto quindi i conti non possono essere *troppo* sbagliati.

EvaristeG
Site Admin
Messaggi: 4777
Iscritto il: 01 gen 1970, 01:00
Località: Roma
Contatta:

Re: Fattorizzazione polinomio di 8 grado

Messaggio da EvaristeG » 07 gen 2013, 01:20

Per fattorizzare $x^8+98x^4+1$ senza morire di conti (ma procedendo comunque con brutalità, seppur spedita), si può passare ai complessi per poi riscendere ai razionali:
sappiamo che $x^8+98x^4+1=(x^4-1)^2-100x^4=(x^4-10ix^2-1)(x^4+10ix^2-1)$. Notiamo che le due biquadratiche sono una il coniugato dell'altra (se $x$ è inteso essere reale) e dunque è ovvio che il prodotto sia coefficienti reali: calcolando il coniugato del prodotto di un polinomio e del suo coniugato (supponendo appunto la variabile reale) abbiamo $\overline{p(x)\overline{p(x)}}=\overline{p(x)}p(x)=p(x)\overline{p(x)}$, quindi è uguale al suo coniugato e dunque è reale.
Le due biquadratiche si fattorizzano con lo stesso trucco
$$x^4-(10i)x^2-1=(x^4-2ix^2-1)-8ix^2=(x^2-i)^2-(2+2i)^2x^2=(x^2+(2+2i)x-i)(x^2-(2+2i)x-i)$$
$$x^4+(10i)x^2-1=(x^4+2ix^2-1)-(-8i)x^2=(x^2-i)^2-(2-2i)^2x^2=(x^2+(2-2i)x+i)(x^2-(2-2i)x+i)$$
Ora, con il ragionamento di prima, $(x^2+(2+2i)x-i)(x^2+(2-2i)x+i)$ sarà reale ed un agile calcolo mostra che è pari a
$$x^4+4x^3+8x^2-4x+1$$
e l'altro prodotto $(x^2-(2+2i)x-i)(x^2-(2-2i)x+i)$ fa
$$x^4-4x^3+8x^2+4x+1\;.$$

Avatar utente
Drago96
Messaggi: 1144
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Fattorizzazione polinomio di 8 grado

Messaggio da Drago96 » 07 gen 2013, 14:18

EvaristeG ha scritto:sappiamo che $x^8+98x^4+1=(x^4-1)^2-100x^4$
Suppongo ci sia un typo: $x^8+98x^4+1=(x^4-1)^2+100x^4$ :)
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)

LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: Fattorizzazione polinomio di 8 grado

Messaggio da LeZ » 07 gen 2013, 20:26

Scusate avete assolutamente ragione, intendevo naturalmente negli interi! Modifico.

Rispondi