Mediamo i logaritmi

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
Il_Russo
Messaggi: 347
Iscritto il: 16 gen 2007, 16:04
Località: Pisa

Mediamo i logaritmi

Messaggio da Il_Russo » 17 mag 2012, 22:14

Sono calati dall'alto dei numeri reali $p_1$, $p_2$, ... $p_n$ compresi strettamente tra 0 e 1 e con somma 1. Voi dovete trovare tutte le $n$-uple di reali $q_1$, $q_2$, ... $q_n$, anche loro compresi strettamente tra 0 e 1 e con somma 1, che rendano massima la quantità

$ \displaystyle \sum_{i=1}^n p_i \log{q_i}$.

Buon $lavoro^3$
Aderisci anche tu al progetto "Diamo a Nonciclopedia una sezione matematica indecente"

Presidente della commissione EATO per le IGO

Il_Russo
Messaggi: 347
Iscritto il: 16 gen 2007, 16:04
Località: Pisa

Re: Mediamo i logaritmi

Messaggio da Il_Russo » 20 mag 2012, 23:09

Ok, effettivamente si tratta di un problema difficile. Quindi vi lascio un aiutino sotto forma di soluzione corretta: anche cercare di dimostrare che si tratta di quella giusta è una bella sfida.

Chiaramente esiste (almeno) una soluzione elementare, e mi aspetto che qualcuno la trovi; tuttavia volendo si risolve in modo abbastanza standard con l'analisi.
Testo nascosto:
L'unica soluzione è la $n$-upla $q_i$ tale che $\forall$ $i \in \{1, \: \ldots , n \}$ $q_i = p_i$
Aderisci anche tu al progetto "Diamo a Nonciclopedia una sezione matematica indecente"

Presidente della commissione EATO per le IGO

spugna
Messaggi: 421
Iscritto il: 19 mar 2009, 22:18
Località: Forlì

Re: Mediamo i logaritmi

Messaggio da spugna » 22 mag 2012, 15:31

Credevo di saperlo risolvere solo partendo da numeri razionali, poi ho scoperto la disuguaglianza di Young!! :D

Prima di tutto abbiamo $\sum\limits_{i=1}^n p_i \log q_i=\sum\limits_{i=1}^n \log q_i^{p_i}=\log \prod\limits_{i=1}^n q_i^{p_i}=\log \left[ \prod\limits_{i=1}^n \left( \dfrac{q_i}{p_i} \right)^{p_i} \cdot \prod\limits_{i=1}^n p_i^{p_i} \right]$

Il secondo prodotto è una costante, perciò mi preoccupo del primo. Ora, per la suddetta disuguaglianza, so che comunque presi dei reali positivi $x_1,x_2,..x_n$ e $\vartheta_1,\vartheta_2,..\vartheta_n$ con $\sum\limits_{i=1}^n \vartheta_i=1$ si ha
$\prod\limits_{i=1}^n x_i \le \sum\limits_{i=1}^n \vartheta_i x_i^{1/\vartheta_i}$
In particolare, ponendo $x_i=\left( \dfrac{q_i}{p_i} \right)^{p_i}$ e $\vartheta_i=p_i$, ottengo $\prod\limits_{i=1}^n \left( \dfrac{q_i}{p_i} \right)^{p_i} \le \sum\limits_{i=1}^n q_i=1$
Ricordando le osservazioni fatte all'inizio abbiamo $\sum\limits_{i=1}^n p_i \log q_i \le \log \prod\limits_{i=1}^n p_i^{p_i}=\sum\limits_{i=1}^n p_i \log p_i$
Confrontando il primo e il terzo membro risulta evidente che si ha l'uguaglianza se $q_i=p_i$ $\forall 1 \le i \le n$
"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero $100$, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)

Maledetti fisici! (cit.)

Il_Russo
Messaggi: 347
Iscritto il: 16 gen 2007, 16:04
Località: Pisa

Re: Mediamo i logaritmi

Messaggio da Il_Russo » 22 mag 2012, 21:09

Bene!

A parte quella analitica, che usa concetti diversi, tutte le soluzioni che ho visto si rifanno in qualche modo alla concavit`a del logaritmo, e anche quella di spugna. Infatti la diseguaglianza di Young discende direttamente dalla concavit`a del logaritmo: come?
Aderisci anche tu al progetto "Diamo a Nonciclopedia una sezione matematica indecente"

Presidente della commissione EATO per le IGO

ant.py
Messaggi: 140
Iscritto il: 18 set 2011, 11:36

Re: Mediamo i logaritmi

Messaggio da ant.py » 22 mag 2012, 22:06

Il_Russo ha scritto:Bene!

A parte quella analitica, che usa concetti diversi, tutte le soluzioni che ho visto si rifanno in qualche modo alla concavit`a del logaritmo, e anche quella di spugna. Infatti la diseguaglianza di Young discende direttamente dalla concavit`a del logaritmo: come?
Hint:
Testo nascosto:
Jensen :D (cmq è inutile che mi faccio il figo è scritto sulle dipsense linkate alla pagina principale del sito delle olimpiadi :twisted:
Anti-intellectualism has been a constant thread winding its way through our political and cultural life. Nurtured by the false notion that democracy means that "My ignorance is just as good as your knowledge. "

Rispondi