infiniti primi congrui a 1 mod n

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
feffe
Messaggi: 4
Iscritto il: 25 dic 2008, 18:50

infiniti primi congrui a 1 mod n

Messaggio da feffe » 25 dic 2008, 19:01

Salve a tutti

sto cercando di capire la dimostrazione di tale teorema, caso particolare del th Dirichlet.
Qualcuno mi sa dire perchè è suff dim che, per ogni n, esiste almeno un primo p == 1 (mod n), e così da qui ricaviamo che sono infiniti??
grazie!

Avatar utente
l'Apprendista_Stregone
Messaggi: 106
Iscritto il: 29 lug 2007, 00:41

Messaggio da l'Apprendista_Stregone » 27 dic 2008, 00:22

Beh se il numero dei primi fosse finito allora prendendo un n ricavato facendo il prodotto di tutti i primi si otterrebbe l'assurdo.
Ciao :wink:
There's a feeling I get when I look to the west
And my spirit is crying for leaving
In my thoughts I have seen rings of smoke through the trees
And the voices of those who stand looking

Avatar utente
kn
Messaggi: 508
Iscritto il: 23 lug 2007, 22:28
Località: Sestri Levante (Genova)
Contatta:

Messaggio da kn » 27 dic 2008, 12:39

l'Apprendista_Stregone ha scritto:se il numero dei primi fosse finito
facendo il prodotto di tutti i primi
Ma stai parlando di tutti i primi o dei primi $ \equiv 1 \pmod n $ :?:

Avatar utente
l'Apprendista_Stregone
Messaggi: 106
Iscritto il: 29 lug 2007, 00:41

Messaggio da l'Apprendista_Stregone » 27 dic 2008, 13:31

Tutti i primi...
Vedo un po' di formalizzare per spiegarmi meglio...(effettivamente son stato poco chiaro)
Diamo per vero che per ogni n esista $ p \equiv 1 \mod n $.
Se il numero dei primi (di tutti i primi) fosse finito allora per ogni primo p si avrebbe che
$ p \equiv p \mod (\prod p_i) $ dove $ \prod p_i $ è il prodotto di tutti i primi. Assurdo.

Spero di essere stato più chiaro ora :wink:
There's a feeling I get when I look to the west
And my spirit is crying for leaving
In my thoughts I have seen rings of smoke through the trees
And the voices of those who stand looking

feffe
Messaggi: 4
Iscritto il: 25 dic 2008, 18:50

Messaggio da feffe » 27 dic 2008, 14:05

No no aspetta... io so che esiste un primo p congruo a 1 modulo n, per ogni n.

Devi sapermi dire perchè allora esistono infiniti primi congrui a 1 modulo n, per ogni n

Avatar utente
SkZ
Messaggi: 3333
Iscritto il: 03 ago 2006, 21:02
Località: Concepcion, Chile
Contatta:

Messaggio da SkZ » 27 dic 2008, 19:22

l'Apprendista_Stregone ha scritto:$ p \equiv p \mod (\prod p_i) $ dove $ \prod p_i $ è il prodotto di tutti i primi. Assurdo.
non ho capito che intendi dire :?
Ogni numero e' congruo a se stesso modulo qualunque numero
impara il [tex]~\LaTeX[/tex] e mettilo da par[tex]\TeX~[/tex]

Software is like sex: it's better when it's free (Linus T.)
membro: Club Nostalgici
Non essere egoista, dona anche tu! http://fpv.hacknight.org/a8.php

Avatar utente
kn
Messaggi: 508
Iscritto il: 23 lug 2007, 22:28
Località: Sestri Levante (Genova)
Contatta:

Messaggio da kn » 27 dic 2008, 19:41

Forse intendeva
$ \prod p_i+1 \equiv 1 \mod (p_i) $, quindi $ \prod p_i+1 $ è un nuovo primo, ed è anche della forma voluta,
anche se non va ancora bene.
E' ovvio che ogni primo è un primo $ \equiv 1 \pmod n $ per qualche n (quindi prima avevo detto una scemenza), ma dobbiamo dimostrare che sono infiniti i primi $ \equiv 1 \pmod n $ con n arbitrario (ma non variabile).
In pratica bisogna far vedere che "scelto a caso un intero positivo n, esistono infiniti primi come sopra tenendo n fermo", non che "in generale esistono infiniti primi come sopra per un insieme di valori convenienti di n". :wink:

Rispondi