pisa-cortona 2003

In questo forum si discute delle Olimpiadi di Matematica

Moderatore: tutor

ma_go
Site Admin
Messaggi: 1906
Iscritto il: 01 gen 1970, 01:00

Messaggio da ma_go » 01 gen 1970, 01:33

ma... qualcuno sa qualcosa di come sia andata la prova?
<BR>qualcuno sa della squadra imo??

Alex85
Messaggi: 197
Iscritto il: 01 gen 1970, 01:00
Località: Roma eur
Contatta:

Messaggio da Alex85 » 01 gen 1970, 01:33

presto si saprà..................
<BR>
<BR>alex

Azarus
Messaggi: 580
Iscritto il: 01 gen 1970, 01:00
Località: Pisa

Messaggio da Azarus » 01 gen 1970, 01:33

il 3 problemotto (ancora in ansiosa attesa di soluzione) è questa simpatica equazione funzionale
<BR>
<BR>
<BR>f[f(x) + y] = 2x + f[f(y)+x]
<BR>
<BR>f da R in R
<BR>
<BR>(ovviamente, determinare tutte le funzioni)
<BR>
<BR>ieri me lo hanno posto....tutte le tecniche standard di soluzione portano a
<BR> 0=0
<BR>
<BR>io ci rinuncio <IMG SRC="images/forum/icons/icon27.gif">

pennywis3
Messaggi: 148
Iscritto il: 01 gen 1970, 01:00
Località: Le fogne

Messaggio da pennywis3 » 01 gen 1970, 01:33

[Al secondo membro fra parentesi c\'è un -, non un +]
<BR>
<BR>Che dire.... e poi c\'è chi si lamenta di non aver vinto la medaglia d\'oro.... <IMG SRC="images/forum/icons/icon_wink.gif">
ok, è vero, mangio i bambini, ma d\'altronde sono più teneri.... e poi voi per pasqua non mangiate tutti quei poveri agnellini?

mario86x
Messaggi: 223
Iscritto il: 01 gen 1970, 01:00
Località: tricase

Messaggio da mario86x » 01 gen 1970, 01:33

quali sono le tecniche standard di soluzione?

pennywis3
Messaggi: 148
Iscritto il: 01 gen 1970, 01:00
Località: Le fogne

Messaggio da pennywis3 » 01 gen 1970, 01:33

Sostituzioni pseudo casuali e determinazione della surgettività-iniettività della funzione tramite il fatto che:
<BR>
<BR>se f(g(....h(x))...) è iniettiva allora h(x) è iniettiva
<BR>se f(g(....h(x))...) è suriettiva allora f(x) è suriettiva
<BR>
<BR>
<BR>~p3~
ok, è vero, mangio i bambini, ma d\'altronde sono più teneri.... e poi voi per pasqua non mangiate tutti quei poveri agnellini?

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Bhè, a occhio direi che almen una soluzione (banale) l\'ho trovata: l\'identità... da qui a dimostrare che è l\'unica o a trovarne altre... insomma, ci o pensato si e no un minuto!!

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

Anzi... ho troppo sonno per postare la soluzione ma credo proprio di aver dimostrato che f(x)=x sia l\'unica soluzione... ma forse la dimostrazione fa ridere (colpa del sonno...) domani mattina ricontrollerò e in caso posterò!

miccia
Messaggi: 103
Iscritto il: 01 gen 1970, 01:00
Località: Camerino (prov. di Macerata)

Messaggio da miccia » 01 gen 1970, 01:33

scusate l\'impertinenza ma qui c\'è da usare una nota forma del teorema di Mircea:
<BR>
<BR>Le equazioni funzionali irrisolvibili hanno per soluzione un polinomio di primo grado.
<BR>
<BR>Dopo lunghi calcoli
<BR>f[f(x) + y] = 2x + f[f(y)+x]
<BR>porta a concludere che f(x)=-x in base al teorema è l\'unica soluzione
<BR>
<BR>Ciao!
<BR>Mircea
<BR>P.S.: non mi lapidate!
<BR>[addsig]
<image src="http://www.deathmetal.com/images/gaurd289.gif">

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

ehm... non è per dire, ma f(x)=-x non è soluzione...

pennywis3
Messaggi: 148
Iscritto il: 01 gen 1970, 01:00
Località: Le fogne

Messaggio da pennywis3 » 01 gen 1970, 01:33

l\'identità non è l\'unica soluzione. Le uniche soluzioni sono nella forma f(x)=x+c... divertitevi <IMG SRC="images/forum/icons/icon_wink.gif">.
<BR>
<BR>
<BR>~p3~
ok, è vero, mangio i bambini, ma d\'altronde sono più teneri.... e poi voi per pasqua non mangiate tutti quei poveri agnellini?

publiosulpicio
Messaggi: 774
Iscritto il: 01 gen 1970, 01:00

Messaggio da publiosulpicio » 01 gen 1970, 01:33

In effetti ieri sera stavo proprio dormendo... ho fatto una scemata assurda, cmq mi pare che il mio procedimento in generale funzioni, devo solo mettere a punto qualche dettaglio... (forse)

miccia
Messaggi: 103
Iscritto il: 01 gen 1970, 01:00
Località: Camerino (prov. di Macerata)

Messaggio da miccia » 01 gen 1970, 01:33

<BR>f[f(x) + y] = 2x + f[f(y)+x]
<BR>diventa
<BR>-(-x+y)=2x-(-y+x)
<BR>x-y=x+y
<BR>ARGH
<BR>beh...guardiamo il lato positivo...
<BR>se y=0 allora è soluzione !!! <IMG SRC="images/forum/icons/icon_biggrin.gif"> <IMG SRC="images/forum/icons/icon_biggrin.gif"> <IMG SRC="images/forum/icons/icon_biggrin.gif">
<BR>ora troviamo la soluzione con + impegno:
<BR>
<BR>a(ax+b+y)+b=2x+a(ay+b+x)+b
<BR>a^2x+ab+ay+b=(2+a)x +a^2y+ab+b
<BR>a^2x+ay=(2+a)x +a^2y
<BR>da cui
<BR>{a^2=2+a
<BR>{a=a^2
<BR>quindi 2+a=a, quindi 2=0
<BR>Doppio ARGH! quindi per il teorema di Mircea non ci sono soluzioni.
<BR>
<BR>poi si può anche fare:
<BR>f[f(x) + y] = 2x + f[f(y)+x] con y=0 diventa
<BR>f(f(x))=2x+f(f(0)+x)
<BR>f[f(x) + y] = 2x + f[f(y)+x] con x=0 e y=x diventa
<BR>f(f(0)+y)=f(f(y))
<BR>
<BR>SSSSSSSSSsìììì ! !!!!!!
<BR>
<BR>ho tutti i motivi per essere felice:
<BR>infatti ci sono 2 casi:
<BR>a) ho fatto un ragionamento giusto
<BR>Allora il teorema di Mircea ha funzionato e sono felice
<BR>b) ho sbagliato qcosa X la seconda volta
<BR>Allora sono un idiota e nella mia idiozia credo che il teorema di Mircea sia infallibile e sono felice
<BR>Ciao!!
<BR>Mircea
<image src="http://www.deathmetal.com/images/gaurd289.gif">

BlaisorBlade
Messaggi: 113
Iscritto il: 01 gen 1970, 01:00
Località: Catania

Messaggio da BlaisorBlade » 01 gen 1970, 01:33

Come ha già detto Pennywise, il testo è sbagliato, quindi tu, Miccia, sei solo un po\' distratto. Ecco il testo corretto(f da R a R):
<BR>f(f(x)+y)=2x+f(f(y)-x)
<BR>Il primo passo per la soluzione è verificare che è surgettiva con la sostituzione y=-f(x):
<BR>f(0)=2x+f(f(-f(x))-x), cioè f(0)-2x=f(f(-f(x))-x); poiché il primo membro assume qualunque valore reale, ecco che è surgettiva. Per il resto, non mi ricordo la soluzione(ho qui davanti quella ufficiale ma vi lascio il divertimento). Sabato pomeriggio, dicono fonti informate(pressoché ufficiali) i compiti erano corretti: i nomi si dovranno sapere lunedì, insieme alle convocazioni per Pisa settembre(oltre a quelli di noi di 4° e 3°).

ma_go
Site Admin
Messaggi: 1906
Iscritto il: 01 gen 1970, 01:00

Messaggio da ma_go » 01 gen 1970, 01:33

i miei complimenti ai sei che difenderanno la bandiera italiana a tokio... e un in bocca al lupo!
<BR>(barbieri in particolar modo...)

Bloccato