La ricerca ha trovato 235 risultati

da elianto84
13 set 2008, 17:49
Forum: Algebra
Argomento: piccolo problema della normale
Risposte: 20
Visite : 5977

Curiosità: (a,b,c) e/o i coefficienti del nostro fantomatico polinomio debbono essere razionali?
da elianto84
29 ago 2008, 16:33
Forum: Geometria
Argomento: Tutti lo sanno, ma...
Risposte: 24
Visite : 8108

Direi corsi e ricorsi storici: viewtopic.php?t=4216&highlight=moltiplicatori
da elianto84
29 ago 2008, 16:02
Forum: Teoria dei Numeri
Argomento: risolvere un bel problema
Risposte: 5
Visite : 1828

Considera l'ordine moltiplicativo di 5 modulo 32: per il teorema di struttura di (\mathbb{Z}/2^n\mathbb{Z})^* esso è necessariamente pari a metà dell'ordine del gruppo, ossia 8. In formule 5^8 \equiv 1\pmod{32} 5^5 \equiv 5^{13}\pmod{100000} Risulta che le ultime 5 cifre di 5^k hanno periodo 8. Ora,...
da elianto84
15 ago 2008, 18:13
Forum: Geometria
Argomento: Cerco una vecchia discussione
Risposte: 3
Visite : 2527

Toh, il Lemma delle Cotangenti, ecco dove serviva.
Grazie a Rocco per avermelo riportato alla memoria ;-)
da elianto84
18 lug 2008, 19:14
Forum: Olimpiadi della matematica
Argomento: IMO 2008, risultati
Risposte: 64
Visite : 23057

Wahoo, pensare che a prima vista il 4 mi sembrava ben più complicato del 5!
Complimenti vivissimi a ITA2, spero sia in zona oro!
da elianto84
17 lug 2008, 18:51
Forum: Olimpiadi della matematica
Argomento: IMO 2008
Risposte: 51
Visite : 19756

Ed ora il problema 1. Lo risolvo con il teorema della secante, ovvero, detto C_1 il punto medio di AB , verifico che l'espressione 4(c/2 - HC_1)(c/2 + HC_1) = c^2 - 4 HC_1^2 è in realtà ciclica nelle variabili (a,b,c) . Ricordando che AH=2R\cos A e cicliche, applico il teorema della mediana al trian...
da elianto84
17 lug 2008, 18:14
Forum: Olimpiadi della matematica
Argomento: IMO 2008
Risposte: 51
Visite : 19756

Provo a far saltare fuori il secondo punto del 2. Impongo \frac{x}{x-1}=\cos\theta\quad\frac{y}{y-1}=\sin\theta\cos\phi\quad\frac{z}{z-1}=\sin\theta\sin\phi , così la seconda è soddisfatta. A questo punto x=\frac{\cos\theta}{1-\cos\theta} eccetera, in quanto f(x)=x/(1-x) è involutiva. Imporre che il...
da elianto84
17 lug 2008, 04:40
Forum: Olimpiadi della matematica
Argomento: IMO 2008
Risposte: 51
Visite : 19756

Il terzo mi sembra anche piuttosto lasco... correggetemi se sbaglio: 1) Prendo un primo p\equiv 1\pmod{4} maggiore di 13 e NON della forma m^2+1 . Lo scrivo come p=a^2+b^2 , con a>b>0 . 2) Dato che (a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2 cerco un intero Q=c^2+d^2 per cui 2Q<p . 3) Impongo (ad-bc)=1 ,...
da elianto84
16 lug 2008, 18:52
Forum: Teoria dei Numeri
Argomento: Divisibilità, n intero dispari
Risposte: 2
Visite : 1795

In 5 variabili, sia e_k la k-esima funzione simmetrica elementare (somma dei prodotti a k a k delle variabili) e p_k la somma delle k-esime potenze delle variabili. Si ha n | e_1 = p_1 n | p_2 2 e_2 = e_1^2 - p_2 n | e_2 Per le formule di Newton-Girard 5e_5 - p_5 = e_4 p_1 - e_3 p_2 + e_2 p_3 - e_1 ...
da elianto84
15 lug 2008, 16:06
Forum: Teoria dei Numeri
Argomento: un problema PENsato
Risposte: 4
Visite : 2054

Davvero carino questo problema! Lascio qualche step in minuscolo. 1) Sono in k^2. Faccio due passi, restando indietro di 1 rispetto al mio target, che è momentaneamente (k+1)^2. Allora faccio altri due passi per raggiungere un nuovo target, che è (k+2)^2. Resto indietro di 2... 2) Il primo quadrato ...
da elianto84
24 giu 2008, 23:05
Forum: Teoria dei Numeri
Argomento: lim phi
Risposte: 9
Visite : 3052

$ n = d \cdot 2^a, d\equiv 1 \pmod{2} $
$ \phi(n) = n \prod_{p|n}\left(1-\frac{1}{p}\right) = 2^{a-1} d \prod_{p|d}\left(1-\frac{1}{p}\right) \geq 2^{a-1} \cdot d \cdot \left(\frac{2}{3}\right)^{\omega(d)} $
$ \phi(n) \geq 2^{a-1} d^{\frac{\log 2}{\log 3}} \geq \frac{1}{2} n^{\beta>0} $
da elianto84
16 giu 2008, 19:05
Forum: Teoria dei Numeri
Argomento: Da un qualche TST: 2p=a^2+5b^2
Risposte: 15
Visite : 6164

Faccio piovere dal cielo un suggerimento-chiave: (2x^2+2xy+3y^2)(2z^2+2zw+3w^2) = 4\sigma\bar{\sigma} \sigma = ((x+y/2) - \sqrt{-5}\,y/2)((z+w/2) - \sqrt{-5}\,w/2) 2\sigma = (2xz+xw+yz+3yw)-\sqrt{-5}\,(yz-wx) 4\sigma\bar{\sigma} = (2xz+xw+yz+3yz)^2+5(yz-wx)^2 Ora basta provare che se -5 è residuo qu...
da elianto84
12 giu 2008, 19:47
Forum: Algebra
Argomento: sommatoria di n^2
Risposte: 4
Visite : 2490

Oppure: si prova per induzione sulla struttura del triangolo di Tartaglia (ogni numero è somma dei due che lo sovrastano, detta spiccia) che \sum_{n=k}^{m}{n \choose k}={{m+1} \choose {k+1}} A questo punto un polinomio in n di k- esimo grado può essere espresso come combinazione lineare a coefficien...
da elianto84
23 mag 2008, 18:04
Forum: Geometria
Argomento: Riga e compasso
Risposte: 12
Visite : 4823

Polo: il buco con la caramella attorno.
Alias: 9 = 1+8.
da elianto84
18 mag 2008, 21:54
Forum: Geometria
Argomento: medie armoniche
Risposte: 2
Visite : 1918

2) Dividendo per $ \sin^3(2\pi/7) $, utilizzando la formula di duplicazione del seno e le stesse convenzioni di prima la tesi diviene: $ 8t^3+4t^2-4t-1=0 $, che abbiamo già provato.