La ricerca ha trovato 86 risultati

da Sepp
06 set 2006, 20:10
Forum: Geometria
Argomento: Linee di Gauss e Aubert
Risposte: 2
Visite : 1857

Linee di Gauss e Aubert

Sia ABCD un quadrilatero e siano E ed F le intersezioni di AB con CD e BC con AD . (a) I punti medi di AC, BD, EF sono allineati (linea di Gauss). (b) Gli ortocentri dei triangoli ABF, CDF, BCE, ADE sono allineati (linea di Aubert). (c) La linea di Gauss e quella di Aubert sono perpendicolari.
da Sepp
31 ago 2006, 11:52
Forum: Combinatoria
Argomento: Insieme nordico di punti vicini
Risposte: 6
Visite : 3786

Re: Insieme nordico di punti vicini

Se non ho capito male il problema non penso sia per ogni $ n $ perchè
se, per ogni punto $ (p, q) $ in $ S $, esattamente due dei punti $ (p + 1, q), (p - 1, q), (p, q + 1), (p, q - 1) $ sono in $ S $.
:?
da Sepp
31 ago 2006, 11:19
Forum: Combinatoria
Argomento: Insieme nordico di punti vicini
Risposte: 6
Visite : 3786

Insieme nordico di punti vicini

Un insieme finito S di punti nel piano a coordinate intere è detto two-neighbor-set (come lo tradurreste? :? ) se, per ogni punto (p, q) in S , esattamente due dei punti (p + 1, q), (p - 1, q), (p, q + 1), (p, q - 1) sono in S . Per quale n esiste un two-neighbor-set che contiene esattamente n punti?
da Sepp
28 ago 2006, 19:05
Forum: Teoria dei Numeri
Argomento: Quadrati perfetti [SNS 1991-1992 / 3]
Risposte: 3
Visite : 1992

Si può anche notare che $ b^2 - 2a^2 = -1 $ è un'equazione di Pell e quindi lavorarci un pò sopra... :D
da Sepp
24 ago 2006, 12:12
Forum: Discorsi da birreria
Argomento: Riforma Fioroni e Università
Risposte: 30
Visite : 15827

uno: picasso è un artista, un grandissimo artista due: dici tanto che vuoi studiare le nostre tradizioni, e la maggior parte delle tradizioni di una civiltò la si vede nell'arte. tre: se non fosse mai esistita l'arte non ci sarebbe la storia, non ci sarebbe nulla, perchè l'unico modo per "dire qual...
da Sepp
21 ago 2006, 18:17
Forum: Geometria
Argomento: Due Quadrati
Risposte: 3
Visite : 3606

Sia H il piede della perpendicolare a DD' passante per A \equiv A' e M l'intersezione di questa con BB' . Si ha \angle DAD' = 180^{\circ} - \angle BAB' . Prolungo AD oltre A di una quantità pari a AD e chiamo X il nuovo estremo. Per LAL si ha \Delta BAB' \cong \Delta XAD' . Sia dunque M' il punto me...
da Sepp
16 ago 2006, 13:54
Forum: Teoria dei Numeri
Argomento: La somma delle radici primitive
Risposte: 2
Visite : 1282

Mi sembra troppo facile, temo di aver male interpretato il problema :?:

Il minimo dovrebbe essere $ 0 $ che si ottiene ad esempio con $ p = 5 $. :?
da Sepp
16 ago 2006, 10:36
Forum: Geometria
Argomento: Il buon Simson con angoli orientati dal buon Kedlaya
Risposte: 2
Visite : 1685

Anch'io avevo pensato ad una soluzione con quel lemma, provo a postarla qui sotto. Mi scuso per la confusione di lettere... :oops: Siano Q_{1}, Q_{2}, Q_{3} i piedi delle perpendicolari da Q ai lati di ABC . Lemma 1 Detta S l'intersezione tra la perpendicolare da Q a BC e la circonferenza, allora AS...
da Sepp
06 ago 2006, 19:06
Forum: Geometria
Argomento: un lemma interessante...
Risposte: 4
Visite : 2516

Per cominciare... :) Chiamiamo B_{2}, C_{2} i punti di intersezione di A_{2}P, A_{3}P rispettivamente con i lati del triangolo. Essendo \angle B_{1}A_{1}C_{1} = \angle A_{2}PA_{3} = \angle B_{2}PC_{2} e A_{1}B_{1} \| PB_{2} , A_{1}C_{1} \| PC_{2} , il triangolo PB_{2}C_{2} è l'omotetico di A_{1}B_{1...
da Sepp
06 ago 2006, 09:04
Forum: Geometria
Argomento: Cerchi che si intersecano, ortocentri e rettangoli
Risposte: 2
Visite : 1813

E vai con la simmetria! :D
da Sepp
06 ago 2006, 08:59
Forum: Geometria
Argomento: Il buon Simson con angoli orientati dal buon Kedlaya
Risposte: 2
Visite : 1685

Il buon Simson con angoli orientati dal buon Kedlaya

Siano $ A, B, C, P, Q $ dei punti su di una circonferenza. Dimostrare che l'angolo orientato modulo $ \pi $ tra le linee di Simson di $ P $ e $ Q $ rispetto al triangolo $ ABC $ è la metà dell'arco orientato $ PQ $.
da Sepp
03 mag 2006, 23:00
Forum: Geometria
Argomento: quadrilatero Russo
Risposte: 21
Visite : 9584

Ma allora EDF e ECF insistono sullo stesso arco di circonferenza EF ed è verificata la tesi. Solo un piccolo chiarimento su questa parte, sqrt2: il fatto che EDF e ECF insistino sullo stesso arco EF, è una diretta conseguenza del fatto che E,D,F e C siano conciclici... che è proprio quello che devi...
da Sepp
01 mag 2006, 21:28
Forum: Geometria
Argomento: quadrilatero Russo
Risposte: 21
Visite : 9584

Se due triangoli hanno tutti gli angoli congruenti allora sono simili. AAA è una abbreviazione di una delle condizioni di similitudine. Un quadrilatero è inscrivibile se e solo se gli angoli opposti sono supplementari e, una volta dimostrato che \Delta ADE e \Delta EDF sono simili, la tesi segue ban...
da Sepp
01 mag 2006, 20:24
Forum: Geometria
Argomento: quadrilatero Russo
Risposte: 21
Visite : 9584

Dov'è che si possono trovare i testi delle prove prima del 1995?
da Sepp
01 mag 2006, 20:13
Forum: Geometria
Argomento: quadrilatero Russo
Risposte: 21
Visite : 9584

Perchè $ ADCM $ è inscrivibile e quindi, se sono simili si ha che $ \angle DCM + \angle FED = \pi $