La ricerca ha trovato 345 risultati

da Euler
03 feb 2011, 21:27
Forum: Olimpiadi della matematica
Argomento: Winter Camp 2011
Risposte: 104
Visite : 16752

Re: Winter Camp 2011

Ah sì, dimenticavo la famosa frase di Sam a Glaudo: "Se non metti via la macchina fotografica ti ritroverai una foto alla prostata!" :)

p.s. 300° messaggio
da Euler
03 feb 2011, 10:46
Forum: Olimpiadi della matematica
Argomento: Winter Camp 2011
Risposte: 104
Visite : 16752

Re: Winter Camp 2011

Beh io non posso dimenticare: -panini al latte, cammelli, folletti julian e lombrichi gioacchino presso castelfidardo -ma lassù piove? -gioacchino che gioca a calcio -andrea cannoniere -40 milioni e DUE PACCHETTI DI PANDISTELLE! -le patate sono migliorate!! -il rito voodoo (si scrive così?) di me e ...
da Euler
03 feb 2011, 09:57
Forum: Algebra
Argomento: Polinomi
Risposte: 2
Visite : 439

Re: Polinomi

Immagino che conosci il Teorema di Ruffini, quindi nella prima relazione posso portare il 7 dall'altra ottenendo $P(1)-7=0$. Quindi il LHS, che è un nuovo polinomio, siccome 1 ne è la radice, diventa della forma $(x-1)Q(x)$ --> $P(x)=(x-1)Q(x)+7$ da cui, siccome Q(x) deve essere per forza intero, so...
da Euler
20 gen 2011, 21:08
Forum: Algebra
Argomento: IMO 1984 n°1
Risposte: 17
Visite : 1517

Re: IMO 1984 n°1

patatone ha scritto:@euler:credo che tu abbia sbagliato i calcoli, il bunching non ti basta, ma potresti usare schur...
Sì è vero scusate :oops: Ho sbagliato per 2 volte a sviluppare il trinomio. Comunque in effetti si può sistemare il tutto con schur, grazie
da Euler
20 gen 2011, 18:32
Forum: Algebra
Argomento: IMO 1984 n°1
Risposte: 17
Visite : 1517

Re: IMO 1984 n°1

Per il secondo punto si può usare il bunching: Sviluppo la disuguaglianza fino a ottenere $\displaystyle \sum_{sym}x^2y +xyz\leq \frac{7}{27}$ Ora scrivo $\frac{7}{27}$ come $\frac{7(x+y+z)^3}{27}$, quindi: $\displaystyle 7(x^3+y^3+z^3)+21\sum_{sym}x^2y+9xyz\geq 27\sum_{sym}x^2y+27xyz$ e adesso è il...
da Euler
16 gen 2011, 16:47
Forum: Algebra
Argomento: Balkan 1984
Risposte: 5
Visite : 719

Re: Balkan 1984

Sì in effetti si fa prima :mrgreen:
da Euler
16 gen 2011, 10:02
Forum: Algebra
Argomento: Balkan 1984
Risposte: 5
Visite : 719

Re: Balkan 1984

Visto che la somma degli $x_i$ è 1 e $f(x):=\frac{1}{2-x}$ è convessa per x positivi e minori di 1, posso usare Jensen, da cui $\displaystyle \sum_{i=1}^{n}\frac{x_i}{2-x_i}\geq \frac{1}{2-(x_1^2+...+x_n^2)}$ Ora uso il QM-AM: $\displaystyle\frac{1}{2-(x_1^2+...+x_n^2)}\geq \frac{1}{2-\frac{1}{n}}=\...
da Euler
15 gen 2011, 13:12
Forum: Geometria
Argomento: SNS 1980-1981 n°3
Risposte: 15
Visite : 1127

Re: SNS 1980-1981 n°3

Volendo si può anche fare un'inversione di centro P con circonferenza di riferimento che interseca l'intersezione tra la tangente a C' per P e C', e si trova la tesi in poco tempo
da Euler
09 gen 2011, 18:18
Forum: Combinatoria
Argomento: Tavola rotonda
Risposte: 15
Visite : 1232

Re: Tavola rotonda

Io, a differenza di paga92aren, mi sono costruito l'algoritmo al contrario, cioè dalla situazione di tutti uni a quella con n e zeri (quindi ad ogni mossa prendo 2 che distano 2 e, se hanno entrambi medaglie, le danno a quello al centro) e continuavo a fare la mossa a partire da uno e andando sempre...
da Euler
09 gen 2011, 18:00
Forum: Teoria dei Numeri
Argomento: Numeri simpatici
Risposte: 12
Visite : 1019

Re: Numeri simpatici

Provo a dare una soluzione del punto a), supponendo che nell'ipotesi era a=b invece che a=0 in entrambi i punti (così almeno mi sembra sensato). a)Siccome un numero non primo è simpatico se e solo se i 2 numeri moltiplicati sono concordi (cioè sono entrambi simpatici o entrambi antipatici), in prati...
da Euler
09 gen 2011, 17:35
Forum: Combinatoria
Argomento: Tavola rotonda
Risposte: 15
Visite : 1232

Re: Tavola rotonda

La soluzione è chiaramente giusta, ma il procedimento è sbagliato. Quando hai detto che quelli a destra hanno lo stesso numero di quelli a sinistra penso che non hai considerato le mosse oltre a quelle di Maria, almeno da quello che ho capito...non potresti spiegare meglio, che magari mi è sfuggito ...
da Euler
09 gen 2011, 11:13
Forum: Combinatoria
Argomento: Tavola rotonda
Risposte: 15
Visite : 1232

Tavola rotonda

Ad una tavola rotonda sono seduti $n$ stagisti. Maria, che è la capitana del gruppo, ha $n$ medaglie e vuole distribuirle secondo la regola seguente: ad ogni turno sceglie uno stagista (eventualmente anche se stessa) che ha almeno due medaglie e gli dice di darne una a ciascuno dei suoi vicini. Dete...
da Euler
26 dic 2010, 21:04
Forum: Olimpiadi della matematica
Argomento: Winter Camp 2011
Risposte: 104
Visite : 16752

Re: Winter Camp 2011

La mia è identica tranne nel fatto che ho trovato la formula chiusa guardando gli $a_n$ come una successione definita per ricorrenza, e quindi con il noto trucchetto di trovare un'altra successione traslata. Comunque l'idea era quella, cioè usare alla fine Eulero-Fermat...
da Euler
26 dic 2010, 19:36
Forum: Combinatoria
Argomento: Anticricche
Risposte: 3
Visite : 444

Re: Anticricche

Ma sbaglio o è semplicissimo? Penso vada bene costruire l' anticricca facendo vertice per vertice. Prendo un vertice a caso, e questo sarà il primo appartenente all'anticricca; poi, per scegliere il secondo, ho una scelta di almeno $n-k-1$ altri vertici, visto che uno è il vertice stesso e al massim...
da Euler
25 dic 2010, 12:36
Forum: Discorsi da birreria
Argomento: Buon Natale a tutti i matematici!
Risposte: 30
Visite : 2630

Re: Buon Natale a tutti i matematici!

Buon Natale a tutti, sia che siate matematici, fisici o ingegneri!! :D