La ricerca ha trovato 216 risultati

da Tess
09 set 2014, 15:48
Forum: Combinatoria
Argomento: Eppure l'ho già visto!
Risposte: 4
Visite : 2049

Eppure l'ho già visto!

E sono sicuro che anche molti di voi l'hanno già visto. Allora volevo spingere quelli che non l'avevano fatto o visto la soluzione a provarlo qui e ad indicare le idee e tecniche chiave per tentare di risolverlo. Ma passiamo al problema: Nel dizionario MA le parole hanno solo 2 lettere (indovinate u...
da Tess
09 set 2014, 09:42
Forum: Scuole d'eccellenza e borse di studio
Argomento: SNS mate 2014/2015
Risposte: 47
Visite : 17795

Re: SNS mate 2014/2015

Ho visto che il problema 2 ha dato del filo da torcere a molti. Volevo quindi abbozzare la mia soluzione. 1) si vede facilmente che un triangolo di area 2 si trova; 2) uno si convince dopo un po' che questa è l'area minima, allora, dato che il quadrato da dolo occupa area 1, se mostriamo che il rest...
da Tess
29 ago 2014, 16:31
Forum: Combinatoria
Argomento: I grafi non vanno in vacanza
Risposte: 3
Visite : 1538

Re: I grafi non vanno in vacanza

Ultimo piccolo commento al problema.
Questo è l'IMO 6 del lontano 1986.
da Tess
29 ago 2014, 16:29
Forum: Combinatoria
Argomento: I grafi non vanno in vacanza
Risposte: 3
Visite : 1538

Re: I grafi non vanno in vacanza

Bene ci siamo! :) Faccio qualche piccolo commento alla tua dimosteazione. La tua distinzione tra vertici bianchi e neri è inutile, anzi meglio, l'hai già fatta suddividendo i vertici in due insiemi $A$ e $B$. Nota che la condizione che dici tu della bicolorazione è equivalente alla bipartizione (fat...
da Tess
26 ago 2014, 16:42
Forum: Combinatoria
Argomento: I grafi non vanno in vacanza
Risposte: 3
Visite : 1538

I grafi non vanno in vacanza

Sono dati $n$ punti a coordinate intere nel piano e 2 colori (facciamo rosso e blu ). Vogliamo colorare i punti dati con questi colori in modo che in ogni retta verticale od orizzontale la differenza tra i punti colorati di un colore e l'altro sia più piccola di 2 in valore assoluto. È possibile far...
da Tess
26 ago 2014, 14:57
Forum: Combinatoria
Argomento: Problema da smanettoni
Risposte: 11
Visite : 2748

Re: Problema da smanettoni

Oh, molto bene! Finalmente ce l'abbiamo fatta! Diciamo che potresti lavorare un po' di più sulla formalizzazione dei tuoi ragionamenti e a tal proposito ti consiglierei di usare più formule e meno parole. Ma al succo della dimostrazione ci siamo. Passo ora a qualche commento. 1) per ottenere esattam...
da Tess
25 ago 2014, 11:00
Forum: Combinatoria
Argomento: Problema da smanettoni
Risposte: 11
Visite : 2748

Re: Problema da smanettoni

Ottimo, quindi sei riuscito a farne stare almeno $10^{81}$! E secondo me non sei neanche troppo distante dall'altro valore! Ma riuscirai ad ottenerlo esattamente?
da Tess
23 ago 2014, 14:31
Forum: Combinatoria
Argomento: Problema da smanettoni
Risposte: 11
Visite : 2748

Re: Problema da smanettoni

Al posto che chiaccherare, potresti scrivere qualche formula e al posto di "azzardare", potresti scrivere i tuoi risultati!
Sei sulla strada giusta :wink:
da Tess
22 ago 2014, 12:48
Forum: Algebra
Argomento: Disuguaglianza apparentemente innocua
Risposte: 47
Visite : 8387

Re: Disuguaglianza apparentemente innocua

Gi. ha scritto:Quindi deve valere $6−2(ab+ac+bc)\leq 0$
C'è qualcosa che non mi torna. Così non mi pare che tu concluda...
da Tess
21 ago 2014, 12:47
Forum: Scuole d'eccellenza e borse di studio
Argomento: Formazione Normale (e Galileiana)
Risposte: 7
Visite : 5171

Re: Formazione Normale (e Galileiana)

Anche se non sono della Galileiana, volevo aggiungere un paio di cose. Intanto, confermo quanto detto da Chuck Schuldiner riguardo l'ambiente molto stimolante e unito, aggiungerei, perché ci si trova in pochi e si è sempre a contatto con gli altri, ci si sostiene e aiuta. E questo è un dato di tutte...
da Tess
21 ago 2014, 11:35
Forum: Combinatoria
Argomento: Problema da smanettoni
Risposte: 11
Visite : 2748

Re: Problema da smanettoni

Sì, bene, è proprio quello che intendevo!

Ma ora pensiamo a come fare per ottenere un'enorme quantità di monete nell'ultima scatola, la parte interessante del problema!
da Tess
20 ago 2014, 13:50
Forum: Combinatoria
Argomento: Problema da smanettoni
Risposte: 11
Visite : 2748

Re: Problema da smanettoni

Sì, bene. Io per il primo punto avevo pensato più ad una classica "invariante", diciamo, qualcosa del tipo $Q=\sum n_i 3^i$ è una quantità che cala sempre. (Perché proprio 3?)

Ora sono convinto che con un po' di impegno riuscirai anche a fare il punto successivo!
da Tess
19 ago 2014, 12:07
Forum: Glossario e teoria di base
Argomento: Generatori
Risposte: 2
Visite : 1373

Re: Generatori

Non riesco a dimostrare perché non esiste se $n=2^k$ con $k\geq 3$ Per mostrare questa parte, ti stai chiedendo perché non esistono elementi di ordine troppo grande, ossia, se l'equazione $a^d\equiv 1$ ha per soluzione tutte le classi di resto coprime col modulo per qualche $d< \phi(2^k)$. Allora, ...
da Tess
19 ago 2014, 11:52
Forum: Combinatoria
Argomento: Problema da smanettoni
Risposte: 11
Visite : 2748

Problema da smanettoni

Ci sono 6 scatole, in fila, numerate da 1 a 6, ciascuna contenente un certo numero di monete (più tardi chiariremo quante). Sono disponibili queste 2 mosse: A) Scegliere una delle prime 5 scatole, togliere una sua moneta (se ce l'ha) e aggiungerne 2 nella scatola successiva; B) Scegliere una delle p...
da Tess
18 ago 2014, 14:30
Forum: Il sito delle olimpiadi della matematica
Argomento: FTP per Videolezioni Senior Matematica (.avi di Gobbino)
Risposte: 6
Visite : 9858

Re: FTP per Videolezioni Senior Matematica (.avi di Gobbino)

Trovo strano l'uso di sudo (dovrebbe servire solo per impostazioni di sistema). Comunque, trovo interessante che qualcuno usi linux e trovi utili le sue molteplici funzionalità!