La ricerca ha trovato 153 risultati

da Gi.
05 set 2018, 12:02
Forum: Teoria dei Numeri
Argomento: Parte decimale di 100/97
Risposte: 9
Visite : 895

Re: Parte decimale di 100/97

Volendo è possibile snellire il discorso ricorrendo al concetto di ordine moltiplicativo e sfruttando il teorema di Lagrange : ci interessa l'ordine moltiplicativo di 10 modulo 97 , quindi per Lagrange deve essere ord_{97}(10) \mid \phi(97)=96 , e con argomenti comuni a quelli presenti nel post prec...
da Gi.
04 set 2018, 18:47
Forum: Teoria dei Numeri
Argomento: IUSS 2011 N 2
Risposte: 1
Visite : 276

Re: IUSS 2011 N 2

Per A. si può notare che se p \ge 5 allora è necessariamente della forma 6k+5 per qualche k \in \mathbb{N} , infatti se fosse della forma 6k+1 si avrebbe q=(6k+1)+2=3(2k+1) e q non sarebbe primo, per cui q=(6k+5)+2 \equiv_{6} 1 , da cui p+q \equiv_{6} 5+1 = 6 \equiv_{6} 0 , ossia 6 \mid p+q Per B. ,...
da Gi.
04 set 2018, 17:37
Forum: Teoria dei Numeri
Argomento: Parte decimale di 100/97
Risposte: 9
Visite : 895

Re: Parte decimale di 100/97

Sia 0<a<96 naturale tale che (a,96)=1 , allora esistono naturali k_1,k_2 tali che |96k_1-ak_2|=1 , e quindi se 10^a \equiv_{97} 1 si avrebbe anche (10^{96})^{k_1}-(10^a)^{k_2} \equiv_{97} 0 \rightarrow (10^{ak_2})(10^{96k_1-ak_2}-1) \equiv_{97} 0 , ma 97 \not \mid 10^{ak_2} , dunque dovrebbe essere ...
da Gi.
15 mag 2018, 13:12
Forum: Algebra
Argomento: Gara a squadre Tor Vergata 2015
Risposte: 3
Visite : 737

Re: Gara a squadre Tor Vergata 2015

Per evitare le derivate: ricaviamo dapprima l'espressione per P(x) \displaystyle \boxed{P(x)}=\sum_{i=0}^{2015}{(-x)^i}=\frac{1-(-x)^{2016}}{1-(-x)}=\boxed{\frac{1-x^{2016}}{1+x}} Assumendo 0<|x|<1 (ci interessano solo i coefficienti del polinomio!), sostituendo 2015 con un generico n e facendo tend...
da Gi.
22 ago 2014, 17:25
Forum: Algebra
Argomento: Disuguaglianza apparentemente innocua
Risposte: 47
Visite : 7026

Re: Disuguaglianza apparentemente innocua

E hai ragione, infatti quel che ho dimostrato è: a^3+b^3+c^3+3 \ge 2(a^2+b^2+c^2)+[6-2(ab+ac+bc)] e 2(a^2+b^2+c^2) \ge 2(a^2+b^2+c^2)+[6-2(ab+ac+bc)] e da queste due ho dedotto a^3+b^3+c^3+3 \ge 2(a^2+b^2+c^2) In pratica lo stesso errore commesso in precedenza. Cerco un'altra strada, da questa non s...
da Gi.
21 ago 2014, 20:11
Forum: Algebra
Argomento: Disuguaglianza apparentemente innocua
Risposte: 47
Visite : 7026

Re: Disuguaglianza apparentemente innocua

Infatti è terribilmente falsa: ho invertito un segno di diseguaglianza :roll: Dalla parte precedente, che a quanto ho capito ti convince, abbiamo a^3+b^3+c^3+3 \ge 2(a^2+b^2+c^2)-2(ab+ac+bc)+6 Quindi deve valere \displaystyle 6-2(ab+ac+bc) \le 0 \Rightarrow ab+ac+bc=\frac{1}{a}+\frac{1}{b}+\frac{1}{...
da Gi.
21 ago 2014, 18:29
Forum: Algebra
Argomento: Disuguaglianza apparentemente innocua
Risposte: 47
Visite : 7026

Re: Disuguaglianza apparentemente innocua

Invece, consideriamo a^3+b^3+c^3-3 abc=1 , allora possiamo riscrivere l'espressione sopra come a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)\ge 3(a^2+b^2+c^2-ab-ac-bc)= 2(a^2+b^2+c^2)+(a^2+b^2+c^2)-3(ab+ac+bc) \ge 2(a^2+b^2+c^2) -2(ab+ac+bc) \le 2(a^2+b^2+c^2) Dove ho utilizzato AM-GM sulla terna (...
da Gi.
02 feb 2014, 14:15
Forum: Glossario e teoria di base
Argomento: Dimostrazione residui quadratici
Risposte: 5
Visite : 1935

Re: Dimostrazione residui quadratici

Non so se ho ben capito quel che intendi, ma x^2\equiv p+k \pmod p , con 1 \le k \le p-1 , allora x^2 \equiv k ridotto modulo p , e 1 \le k \le p-1 . Secondo me ti stai ponendo nel modo sbagliato nei confronti della definizione: un residuo quadratico è un numero a che viene generato da un quadrato q...
da Gi.
02 feb 2014, 11:52
Forum: Glossario e teoria di base
Argomento: Dimostrazione residui quadratici
Risposte: 5
Visite : 1935

Re: Dimostrazione residui quadratici

a è un residuo quadratico modulo p se e solo se esiste un x tale che x^2 \equiv a \pmod p Sotto spoiler metto una roba un po' casereccia per contarli: Proviamo prima due casi facili da controllare: mod 5 e mod 7. 0 \longrightarrow 0 \equiv 0 \pmod p 1 \longrightarrow 1 \equiv 1 \pmod p 2 \longright...
da Gi.
31 gen 2014, 20:53
Forum: Combinatoria
Argomento: 38. Il [tex]k[/tex]-piedi
Risposte: 7
Visite : 1567

Re: 38. Il [tex]k[/tex]-piedi

Quello che intende dire Lasker è che il k-piede agisce esattamente n volte su ognuna delle k zampe. Se chiamiamo a_i una azione del k-piede sulla i -esima zampa, allora tutti i modi di vestirsi sono dati dagli anagrammi di una parola con n a_1 , n a_2 , n a_3 ,..., n a_k : \displaystyle \frac{(nk)!}...
da Gi.
04 gen 2014, 21:08
Forum: Combinatoria
Argomento: lenzuolo macchiato
Risposte: 18
Visite : 2911

Re: lenzuolo macchiato

Poiché quella sopra è scritta orrendamente provo a scriverla meglio (l'idea di base è la stessa ma riduco i casi a due). Prendo un triangolo equilatero, per pigeonhole due lati di questo hanno lo stesso colore (WLOG sono neri). Adesso considero il vertice di colore diverso come il centro di un esago...
da Gi.
04 gen 2014, 20:14
Forum: Combinatoria
Argomento: lenzuolo macchiato
Risposte: 18
Visite : 2911

Re: lenzuolo macchiato

L'esagono ha le diagonali tutte della stessa lunghezza [non proprio tutte, ma quelle usate da me (ossia quelle che sono anche diagonali dei rombi formati coi vari triangoli equilateri) dovrebbero esserlo]. Costruisco un'esagono regolare (indubbiamente posso): il centro è di uno dei due colori, WLOG ...
da Gi.
04 gen 2014, 17:24
Forum: Combinatoria
Argomento: lenzuolo macchiato
Risposte: 18
Visite : 2911

Re: lenzuolo macchiato

Yep, sinceramente nonostante Zeitz abbia definito "migliore" il metodo che utilizza il pigeonhole io preferisco molto di più quello con la circonferenza (è semplicemente geniale ) :lol: Spero non pensiate che abbia riciclato la soluzione tanto per spiaccicarla qui e dire "so risolvere il problema", ...
da Gi.
01 gen 2014, 09:49
Forum: Combinatoria
Argomento: Corso Prime: Pb. 10.3 (tassellare scacchiera lunga)
Risposte: 1
Visite : 1908

Re: Corso Prime: Pb. 10.3 (tassellare scacchiera lunga)

Bel problema :D Sia r_n il numero di ricoprimenti possibili di un rettangolo r \times 2 . A questo punto preso un rettangolo r\times 2 divido il problema in due "sottosezioni": K : inserisco un pezzo verticalmente sull'estrema destra in modo da ricoprire le ultime due caselle. j : inserisco due pezz...
da Gi.
01 gen 2014, 09:09
Forum: Combinatoria
Argomento: lenzuolo macchiato
Risposte: 18
Visite : 2911

Re: lenzuolo macchiato

Prendo un punto macchiato sul lenzuolo, da questo traccio una circonferenza di raggio 1 metro che lo ha per centro.
Se sulla circonferenza è presente un altro punto macchiato ho finito, se tutti i punti sono non macchiati ho ugualmente concluso.