La ricerca ha trovato 11 risultati

da TeoricodeiNumeri
14 ago 2019, 10:55
Forum: Combinatoria
Argomento: Sant'anna 2017 - Matematica esercizio 3
Risposte: 2
Visite : 172

Re: Sant'anna 2017 - Matematica esercizio 3

1)Dalla considerazione che servono almeno $\vert p \vert$ mosse per cambiare colonna $\vert p \vert$ volte e $\vert q\vert$ mosse per cambiare colonna almeno $\vert q \vert$ volte e ogni mossa cambia o riga o colonna (ma non entrambe), allora un lower bound per il numero minimo di mosse necessarie ...
da TeoricodeiNumeri
25 lug 2019, 13:20
Forum: Algebra
Argomento: Disuguaglianza da spiaggia
Risposte: 4
Visite : 323

Re: Disuguaglianza da spiaggia

Consideriamo il caso in cui $a=b=c$. La disuguaglianza diventa perciò $6a^9 \geq 3a^9 +3a^8$ che non è vera per $a<1$. Di conseguenza supporrò che l'autore del messaggio intendesse : dimostrare che per $a,b$ e $c$ positivi si ha che $a^3 b^6 +b^3 c^6 +c^3 a^6 +3a^3 b^3 c^3 \geq abc(a^3 b^3 + b^3 c^...
da TeoricodeiNumeri
24 lug 2019, 08:50
Forum: Combinatoria
Argomento: SNS 2014-2015 n.3
Risposte: 8
Visite : 2750

Re: SNS 2014-2015 n.3

Vi propongo questa soluzione del secondo punto. Affinché Alessia percorra esattamente $n$ passi si deve avere banalmente che $a+b=n$ con $(a;b)$ coordinate del punto di arrivo. A questo punto distinguiamo due casi: 1) $b\leq a$: dalla risoluzione del primo punto del problema si ottiene gratuitamente...
da TeoricodeiNumeri
23 lug 2019, 14:58
Forum: Algebra
Argomento: P è una potenza di 2
Risposte: 4
Visite : 1535

Re: P è una potenza di 2

Ci tengo a proporre una mia soluzione in analisi perché è la prima volta che mi capita di usarla in un problema di tipo "olimpico". Tuttavia spero vivamente che ce ne sia una più corta e meno analitica. Supponiamo che il polinomio $P\in \mathbb{Z}[x]$ verifichi la condizione richiesta. Supponiamo ch...
da TeoricodeiNumeri
20 lug 2019, 04:00
Forum: Teoria dei Numeri
Argomento: Problema 3 teoria dei numeri.
Risposte: 10
Visite : 1963

Re: Problema 3 teoria dei numeri.

Vi offro una soluzione molto poco elegante e più lunga ma che fa uso di un argomento di teoria dei numeri che mi piace molto: $parametrizzazione \hspace{1mm} terne \hspace{1mm} pitagoriche \hspace{1mm} primitive$. Ci limiteremo a determinare solo tutte le soluzioni per cui $y\geq 0$ e $x\geq 0$ in ...
da TeoricodeiNumeri
19 lug 2019, 10:57
Forum: Algebra
Argomento: Polinomi e congruenze?
Risposte: 14
Visite : 985

Re: Polinomi e congruenze?

Vi propongo un'altra maniera di vedere il problema. In pratica ci viene chiesto: sia $p$ un polinomio a coefficienti interi. Sapendo che $\begin{cases} p\equiv 4 (\mod x+2)\\ p\equiv 8 (\mod x-2)\\ p\equiv 13 (\mod x+3)\\ \end{cases}$ e detto $r$ il resto di $p$ per $(x+2)(x-2)(x+3)$, determinare qu...
da TeoricodeiNumeri
17 lug 2019, 01:41
Forum: Teoria dei Numeri
Argomento: Dio$\phi$antea
Risposte: 1
Visite : 858

Re: Dio$\phi$antea

Propongo la mia soluzione nella speranza che sia corretta (mi scuso in anticipo per il fatto che è lunga: probabilmente si può accorciare). Vogliamo dimostrare che le uniche soluzioni sono $(2;2)$ e $(4;2)$. Come prima cosa verifichiamo che queste due sono soluzioni. Difatti $2^2 +(2-1-1)!=2^2 +1$ e...
da TeoricodeiNumeri
16 lug 2019, 23:47
Forum: Combinatoria
Argomento: Prodotto di tre numeri
Risposte: 4
Visite : 1102

Re: Prodotto di tre numeri

A me viene un risultato differente. In pratica ci viene questo in quanti modi $6^{20}$ può essere scritto come prodotto di tre fattori a meno dell'ordine in cui vengono scelti. La tecnica (abbastanza standard) che propongo di conseguenza è la seguente: 1) troviamo quante sono le terne $(a,b,c)$ di n...
da TeoricodeiNumeri
16 lug 2019, 21:16
Forum: Geometria
Argomento: Geometrico Non Banale (O forse sì?)
Risposte: 5
Visite : 1000

Re: Geometrico Non Banale (O forse sì?)

Vi propongo una soluzione di stampo euclideo (anche se ad un certo punto compare un po' di trigonometria). Si congiungano $E$ con $P$ e $D$ con $Q$ e denotiamo con $X$ il punto di intersezione fra $EP$ e $DQ$. Siano $S_1,S_2,S_3$ e $S_4$ rispettivamente le aree dei triangoli $PXQ,QXE,EXD$ e $DPX$. C...
da TeoricodeiNumeri
16 lug 2019, 11:06
Forum: Algebra
Argomento: Suriettività in [tex]\mathbb Z[/tex]
Risposte: 5
Visite : 754

Re: Suriettività in [tex]\mathbb Z[/tex]

Denotiamo con $F=\lbrace f: \mathbb{Z}\rightarrow \mathbb{Z} \vert \forall g:\mathbb{Z}\rightarrow \mathbb{Z}: g \hspace{1mm} suriettiva \Rightarrow f+g \hspace{1mm}suriettiva \rbrace$. Sia $f\in F$ e dimostriamo che $-f\in F$. Difatti $\forall g \hspace{1mm} suriettive: -(-g)+f \hspace{1mm} suriet...
da TeoricodeiNumeri
14 lug 2019, 12:56
Forum: Algebra
Argomento: Cavoli a merenda (problema olimpiadi)
Risposte: 10
Visite : 1723

Re: Cavoli a merenda (problema olimpiadi)

Vi propongo una soluzione un po' più tecnica, apparentemente più lunga ma che forse semplifica un po' il numero dei casi da considerare. In pratica è come se ci venisse chiesto: trovare $a,b,c$ numeri naturali per cui $\begin{cases} a^2 -336=b^2\\ b^2-336=c^2\\ \end{cases}$\\ Dalla seconda equazion...