La ricerca ha trovato 18 risultati

da TheRoS
18 giu 2018, 15:34
Forum: Combinatoria
Argomento: diagonali e parti
Risposte: 5
Visite : 324

Re: diagonali e parti

Allora, premetto che devo fare ancora tutti i calcoli, ma per massimizzare le parti in cui viene diviso secondo me bisogna prendere i poligoni convessi che non hanno mai tre diagonali concorrenti. Una volta trovati i punti che si creano da tutte le intersezioni (i nodi del grafo), si possono trovare...
da TheRoS
18 giu 2018, 10:58
Forum: Combinatoria
Argomento: diagonali e parti
Risposte: 5
Visite : 324

Re: diagonali e parti

Hai usato anche tu la formula di Eulero ($v-e+f=2$) per generalizzarlo?
da TheRoS
13 giu 2018, 14:55
Forum: Olimpiadi della matematica
Argomento: Senior 2018
Risposte: 50
Visite : 4871

Re: Senior 2018

Scusate, posso dare per scontato il fatto che se un grafo non contiene cicli dispari, allora può essere sicuramente bipartito?
da TheRoS
05 giu 2018, 18:02
Forum: Olimpiadi della matematica
Argomento: Senior 2018
Risposte: 50
Visite : 4871

Re: Senior 2018

Non devi necessariamente aver partecipato a Cesenatico, ma devi risolvere e inviare alcuni problemi. Il post dove potrai trovare ulteriori informazioni sarà a breve su questo topic.
da TheRoS
24 mag 2018, 10:20
Forum: Algebra
Argomento: Algebra learning
Risposte: 65
Visite : 10338

Re: Algebra learning

Ah giusto, c'è da dimostrare che l'uguaglianza non va bene.
Si ha l'uguaglianza quando ogni $a_i=\frac{1}{i-1}$, ma se ciò fosse vero, il prodotto di questi viene minore di 1 e perciò si esclude.
da TheRoS
23 mag 2018, 20:53
Forum: Algebra
Argomento: Algebra learning
Risposte: 65
Visite : 10338

Re: Algebra learning

Provo il 18.1 Per ogni $i$ appartenente a $(2,\dots,n)$ compiamo il seguente ragionamento. \begin{equation} a_i+1=a_i+\frac{1}{i-1}+\dots+\frac{1}{i-1} \end{equation} Dove $\frac{1}{i-1}$ compare $i-1$ volte. Applichiamo ora $AM-GM$ su questi $i$ termini attendo che: \begin{equation} \frac{a_i+1}{i}...
da TheRoS
14 apr 2018, 20:57
Forum: Combinatoria
Argomento: Sequenze ripide
Risposte: 2
Visite : 249

Re: Sequenze ripide

Sostanzialmente bisogna prendere 3 numeri distinti nell'intervallo $1,\dots,29$ e i modi per farlo sono $\binom{29}{3}$. Osserviamo che una volta presi i tre numeri c'è un solo modo per disporli nel modo richiesto nelle ipotesi. Quindi il valore cercato dovrebbe essere $\binom{29}{3}=3654$. A me tor...
da TheRoS
09 apr 2018, 20:14
Forum: Algebra
Argomento: Algebra learning
Risposte: 65
Visite : 10338

Re: Algebra learning

Provo il 15.1 (ma non so se è giusta) Sia $k=\frac{a}{b}$ che quindi per ipotesi è $\ge 1$. Considerando $a=bk$ ottengo che: \begin{align} b(\sqrt{k^2 +1}+\sqrt[3]{k^3+1}+\sqrt[4]{k^4+1})\le (3k+1)b\iff \\ \iff \sqrt{k^2 +1}+\sqrt[3]{k^3+1}+\sqrt[4]{k^4+1}\le 3k+1 \end{align} A questo punto si defin...
da TheRoS
08 apr 2018, 17:32
Forum: Geometria
Argomento: Circonferenze e tangenti
Risposte: 3
Visite : 668

Re: Circonferenze e tangenti

Viene tipo una cosa di questo tipo? Sia $f$ l'inversione di centro $P$ e di raggio $PK$. Per prima cosa notiamo che $PB_1\cdot PA_1=PB_2\cdot PA_2=PK^2$ (perché $P$ sta sull'asse radicale di $S_1$ ed $S_2$). In base a ciò notiamo che $f(S_1)=S_1$, $f(S_2)=S_2$ e che $f(S)=B_1B_2$. Siccome si manteng...
da TheRoS
26 mar 2018, 21:45
Forum: Combinatoria
Argomento: Yo
Risposte: 8
Visite : 1662

Re: Yo

Allora, innanzitutto mi torna il tuo stesso risultato, però non so se il procedimento è giusto. Il ragionamento è analogo a quello che ho usato per il caso numerico: tabella $p$x$s$. Siamo sicuri che c'è uno studente che ha risolto almeno $[\frac{n\cdot p}{s}]$. Ora, siccome i casi si facilitano man...
da TheRoS
22 mar 2018, 08:19
Forum: Matematica ricreativa
Argomento: Numeri romani
Risposte: 2
Visite : 1287

Re: Numeri romani

Sì, è giusto :D
da TheRoS
21 mar 2018, 20:23
Forum: Matematica ricreativa
Argomento: Numeri romani
Risposte: 2
Visite : 1287

Numeri romani

Spostare un fiammifero per far tornare l'uguaglianza.
II-VII=I.
(Ogni stanghetta è un fiammifero)
Per rendere più creativo il quesito voglio imporre una limitazione: è vietato fare il simbolo della disuguaglianza ($\neq$)
da TheRoS
18 mar 2018, 15:54
Forum: Combinatoria
Argomento: Yo
Risposte: 8
Visite : 1662

Re: Yo

Allora provo il primo punto. Considero una griglia 6x300, dove nelle colonne ci sono i sei problemi mentre nelle righe i 300 studenti. Quindi diciamo che se una casella viene marcata con una "X", lo studente che si trova sulla riga della "X" ha risolto il problema che si trova sulla colonna di quest...
da TheRoS
12 mar 2018, 22:29
Forum: Combinatoria
Argomento: Problema vecchio di un anno
Risposte: 1
Visite : 520

Re: Problema vecchio di un anno

Intanto $3033030^4=3^4\cdot 2^4\cdot 5^4\cdot 11^4\cdot 13^4\cdot 7^4\cdot101^4$. A questo punto immaginiamo di porre i quattro 3, i quattro 2, i quattro 5, i quattro 11, i quattro 13 , i quattro 7 e i quattro 101 in un insieme $X$, mentre i tre numeri cercati (chiamiamoli $n_1$, $n_2$, $n_3$) in un...
da TheRoS
27 feb 2018, 20:55
Forum: Algebra
Argomento: Algebra learning
Risposte: 65
Visite : 10338

Re: Algebra learning

Provo il 12.3 Per prima cosa notiamo che $P(P(x))=Q(Q(x))$ perché assumono lo stesso risultato per infiniti valori iniziali. Inoltre possiamo constatare che $deg(P(x))=deg(Q(x))$: il grado di $P(P(x))$ è dato dal grado di $P(x)$ (che chiameremo $d_p$) moltiplicato per sé stesso (l'esponete di grado ...