La ricerca ha trovato 54 risultati

da Maionsss
19 giu 2019, 12:32
Forum: Algebra
Argomento: Da Cese2013 con furore
Risposte: 4
Visite : 1000

Re: Da Cese2013 con furore

Grazie mille e complimenti per la soluzione :)
da Maionsss
17 giu 2019, 12:19
Forum: Algebra
Argomento: Da Cese2013 con furore
Risposte: 4
Visite : 1000

Re: Da Cese2013 con furore

Hai perfettamente ragione :lol:
Sto imparando a utilizzare bene latex quindi quando posso mi addentro nelle sue funzioni più "nascoste" :D :lol:
da Maionsss
16 giu 2019, 23:42
Forum: Algebra
Argomento: Da Cese2013 con furore
Risposte: 4
Visite : 1000

Da Cese2013 con furore

Buonasera a tutti , qualcuno potrebbe aiutarmi a risolvere il seguente problema ?? :D

Sia $p>1$ un numero reale e $x_n$ una successione definita nel seguente modo :$x_0=\frac{1}{p}$ e $ x_{n+1}=2x_n\sqrt{1-x_n^2}$. Qual è il più grande valore di $p$ tale che $x_{12}=x_0$ ?
da Maionsss
14 giu 2019, 20:20
Forum: Algebra
Argomento: Cavoli a merenda (problema olimpiadi)
Risposte: 10
Visite : 4034

Re: Cavoli a merenda (problema olimpiadi)

Nono la soluzione è identica a quella già postata :lol:
da Maionsss
14 giu 2019, 13:37
Forum: Algebra
Argomento: Cavoli a merenda (problema olimpiadi)
Risposte: 10
Visite : 4034

Re: Cavoli a merenda (problema olimpiadi)

Testo nascosto:
$289?$
È solo la risposta numerica, in caso fosse giusta posto la mia soluzione.
da Maionsss
14 ago 2018, 17:08
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

Credo di aver capito come risolvere il problema di partenza..... @Fenu fammi sapere se è giusto perché con il risultato mi trovo siano $1,\omega,\omega^2$ radici terze dell'unità, abbiamo che $p(1)=a_0+a_1+a_2+a_3+a_4+....=1$ $p(\omega)=a_0+a_1\omega+a_2\omega^2+a_3+a_4\omega+....=0$ $p(\omega^2)=a_...
da Maionsss
01 ago 2018, 13:44
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

@Lasker in realtà il problema sui binomiali l'ho già risolto ... Solo che non so bene come semplificare i risultati in modo da "eliminare le dipendenze dalle radici terze dell'unità" come ho fatto nel problema dei dadi
da Maionsss
26 lug 2018, 23:37
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

@Fenu Qualche hint per l'altro problema... Credo di essermi bloccato :roll:
da Maionsss
25 lug 2018, 20:23
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

@Fenu provo il problema sui dadi
Testo nascosto:
Sia $n$ il numero di dadi lanciati. La probabilità richiesta è forse $\frac{6^{n-1}+(-1)^n}{7\cdot{6^{n-1}}}$?
da Maionsss
23 lug 2018, 23:13
Forum: Algebra
Argomento: Polinomi... HELP!
Risposte: 3
Visite : 1192

Re: Polinomi... HELP!

Comunque, un consiglio...
Testo nascosto:
per determinare i coefficienti del polinomio non è necessario porre prima $x=0$ e poi $x=1$, puoi direttamente uguagliare i coefficienti dei due membri, ovvero $a^2=2a$ e $ab+b=2b+8a$, questo per il principio di identità dei polinomi
da Maionsss
23 lug 2018, 23:05
Forum: Algebra
Argomento: Polinomi... HELP!
Risposte: 3
Visite : 1192

Re: Polinomi... HELP!

Si è giusto
da Maionsss
20 lug 2018, 21:21
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

Ah scusa credevo che per " prendere familiarità" intendessi dimostrare perché da quelle espressioni si arrivava a quelle formule. Comunque per quanto riguarda la semplificazioni, appena ho un po' di tempo per studiare meglio le radici dell'unità e le loro proprietà, ci provo. Se ho bisogno di aiuto ...
da Maionsss
20 lug 2018, 19:24
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

@Fenu ho risolto gli esercizi che mi avevi proposto,scusa se ci ho messo tanto ma in questi giorni non ho avuto proprio tempo. $1)$ Per la prima sommatoria si arriva alla formula $\frac{2^n+(1+\omega)^n + (1+\omega^2)^n}{3}$ con $\omega,\omega^2$ radici terze dell' unità; Per la seconda sommatoria u...
da Maionsss
20 lug 2018, 18:51
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

@Drago96 infatti il risultato finale del problema è la somma tra numeratore e denominatore della frazione ridotta ai minimi termini
da Maionsss
15 lug 2018, 02:15
Forum: Algebra
Argomento: Polinomio da cesenatico
Risposte: 23
Visite : 5474

Re: Polinomio da cesenatico

Ti ringrazio da subito per i tuoi suggerimenti :D Per prima cosa provo a dimostrare la formula sperando di non aver detto qualche scemenza :? Sia p(x) =a_nx_n+ a_{n-1}x^{n-1}+....+a_1x+a_0 e siano \omega, \omega^2,....\omega^{k-1} radici k -esime complesse dell'unità. Consideriamo ora la somma p(1)+...