La ricerca ha trovato 13 risultati

da Ilgatto
02 gen 2018, 18:10
Forum: Teoria dei Numeri
Argomento: Diofantea
Risposte: 5
Visite : 485

Re: Diofantea

Se risolvi la quadratica in $p$ il delta deve essere un quadrato perfetto $k^2$ perché senno ciccia; ma il delta è $8(n^3+1)+9=8p(2p-3)+9$ da cui $$8p(2p-3)=k^2-9=(k+3)(k-3)$$ Ora visto che $p$ è primo $p\mid (k+3)$ oppure $p\mid (k-3)$, e più o meno qui secondo me te la cavi facendo i casi a manin...
da Ilgatto
31 dic 2017, 17:49
Forum: Teoria dei Numeri
Argomento: Diofantea
Risposte: 5
Visite : 485

Re: Diofantea

Premetto che la mia soluzione non è completa e che servirebbe l'aiuto di qualcuno di più esperto per concludere. Riscriviamo la diofantea come: $$p(2p-3)=n^3+1=(n+1)(n^2-n+1)$$ Ora, $2$ soluzioni facili da trovare sono nel caso in cui $p=n+1$. Sostituendo si ottiene $n^2-3n+2=0$ e ottengo quindi $(2...
da Ilgatto
05 dic 2017, 21:54
Forum: Combinatoria
Argomento: Inserito anche nell'altro forum!
Risposte: 3
Visite : 642

Re: Inserito anche nell'altro forum!

Visto che nessuno risponde ci provo io: Definiamo le possibili condizioni in cui si trova il prigioniero: il caso "non ha niente" lo chiamo $n$ quello in cui ha solo il martello lo chiamo $a$ quello in cui ha solo il mattone lo chiamo $b$ quello in cui ha sia il mattone che il martello lo chiamo $e$...
da Ilgatto
15 nov 2017, 22:57
Forum: Combinatoria
Argomento: Hanno arrestato Gobbino!
Risposte: 2
Visite : 642

Re: Hanno arrestato Gobbino!

Per facilitare la spiegazione, consideriamo la prima retta orizzontale, se non lo fosse, ruotiamo il piano per renderla tale. Definiamo $x \ge 0$ il numero di rette verticali e $y\ge 1$ il numero di rette orizzontali compresa la prima. Sapendo che le rette totali sono tante quanti i giorni, allora $...
da Ilgatto
15 nov 2017, 18:07
Forum: Combinatoria
Argomento: numeri che differiscono di 2
Risposte: 2
Visite : 384

Re: numeri che differiscono di 2

Inizio considerando le cifre come coordinate di un oggetto, ricordando le condizioni su $n$: partendo dalla cifra più significativa considero una tabella con $1$ riga e $5$ colonne, se la cifra è $1$ allora l'oggetto è nella prima colonna, se è $3$ nella seconda ecc. Posso fare queste osservazioni: ...
da Ilgatto
03 nov 2017, 21:13
Forum: Algebra
Argomento: Disuguaglianza con radici
Risposte: 3
Visite : 755

Re: Disuguaglianza con radici

Hai ragione, dovevo controllare meglio. Comunque: Applico la disuguaglianza di Jensen alla funzione convessa $f(x)= \frac {3}{\sqrt {x}}$ ottenendo: $$xf(y^2+1)+yf(z^2+1)+zf(x^2+1) \ge 3f\left(\frac{x^2z+y^2x+z^2y+x+y+z}{3}\right)=3k$$ Da cui: $$k=f\left(\frac{x^2z+y^2x+z^2y+3}{3}\right)$$ Per trova...
da Ilgatto
30 ott 2017, 20:58
Forum: Algebra
Argomento: Disuguaglianza con radici
Risposte: 3
Visite : 755

Re: Disuguaglianza con radici

Inizio riscrivendo la disequazione come: $$\frac {x}{3}*\frac {3}{\sqrt{y^2+1}} + \frac {y}{3}*\frac {3}{\sqrt{z^2+1}} + \frac {z}{3}*\frac {3}{\sqrt{x^2+1}} \ge k$$ Applico la disuguaglianza di Jensen alla funzione f(x) = \frac {3}{\sqrt{x^2+1}} ricordando che \frac {x+y+z}{3} = 1 e che la funzion...
da Ilgatto
27 ott 2017, 14:55
Forum: Combinatoria
Argomento: Se non ho cannato i ragionamenti...
Risposte: 6
Visite : 929

Re: Se non ho cannato i ragionamenti...

Stiamo discutendo la situazione in cui abbiamo 4 vertici collegati in questo modo: $a$ collegato a $b$, $c$ e $d$ $b$ collegato a $a$, $c$ e $d$ $c$ collegato a $a$ e $b$ $d$ collegato a $a$ e $b$ Per quanto detto prima, $n=3$ perchè i 3 insiemi sono {$a$}, {$b$} e {$c, d$}. Se aggiungo un quinto ve...
da Ilgatto
26 ott 2017, 13:43
Forum: Combinatoria
Argomento: Se non ho cannato i ragionamenti...
Risposte: 6
Visite : 929

Re: Se non ho cannato i ragionamenti...

Pensavo non servisse una dimostrazione. Comunque se si pensa che esista una funzione $f(x)$ che associa a ogni vertice $x$ il suo insieme di appartenenza, si nota che se $f(a)=f(b)$ allora $a$ e $b$ non possono essere collegati. Nel caso assurdo in cui io abbia 4 vertici appartenenti a 4 insiemi div...
da Ilgatto
25 ott 2017, 22:16
Forum: Combinatoria
Argomento: Se non ho cannato i ragionamenti...
Risposte: 6
Visite : 929

Re: Se non ho cannato i ragionamenti...

Sono possibili solo i casi $n=2$ e $n=3$. Chiamiamo $k$ il numero di vertici del nostro grafo. Notiamo prima di tutto che ci sono esattamente $k$ archi che collegano i vertici tra loro. Iniziamo dicendo che, essendo $k>0$, il caso $n=1$ non può verificarsi perchè due vertici collegati devono stare i...
da Ilgatto
25 ott 2017, 18:00
Forum: Combinatoria
Argomento: quasi una scacchiera
Risposte: 1
Visite : 347

Re: quasi una scacchiera

Diamo delle coordinate alle varie caselle: lettere da $a$ a $g$ per le colonne e numeri da $1$ a $7$ per le righe, chiamando la casella nell'angolo in basso a sinistra $a1$. Considero separatamente le varie caselle: Se una delle 2 nere è quella centrale ($d4$) ho 12 colorazioni possibili ( \frac {7...
da Ilgatto
24 ott 2017, 21:12
Forum: Combinatoria
Argomento: Semplice e carino
Risposte: 9
Visite : 631

Re: Semplice e carino

Potrei scriverla come $ \frac {n!} {(2n-1)!!} $
Non mi sembra ci siano altri modi per scriverla. Per chi non lo sapesse il doppio punto esclamativo indica il semifattoriale, cioè, in questo caso, il prodotto di tutti i numeri dispari da $1$ a $2n-1$.
da Ilgatto
24 ott 2017, 17:10
Forum: Combinatoria
Argomento: Semplice e carino
Risposte: 9
Visite : 631

Re: Semplice e carino

Ciao, Io ho trovato questa soluzione: \displaystyle\prod_{k=1}^n \frac {k}{2k-1} In pratica è sufficiente considerare che alla prima persona dò prima un guanto qualsiasi, poi ne devo dare uno diverso, che posso scegliere tra gli $n$ rimasti di tipo "diverso" su $2n-1$ totali, poi vado avanti fino al...