La ricerca ha trovato 5 risultati

da dduss
31 ago 2016, 09:04
Forum: Fisica
Argomento: Accelerazione di Coriolis
Risposte: 3
Visite : 4031

Re: Accelerazione di Coriolis

Non tenevo conto del fatto che [tex]r_N[/tex] ruota, in [tex]I[/tex], con una velocità angolare aggiuntiva pari a quella di [tex]N[/tex] stesso.
da dduss
30 ago 2016, 21:39
Forum: Fisica
Argomento: Accelerazione di Coriolis
Risposte: 3
Visite : 4031

Re: Accelerazione di Coriolis

Grazie mille, sei stato chiarissimo :D
da dduss
30 ago 2016, 21:29
Forum: Algebra
Argomento: Proprietà della media p-esima
Risposte: 4
Visite : 635

Re: Proprietà della media p-esima

Hmmm... scusa ma se un [tex]y_i[/tex] è minore di 1, [tex]y_i^{p}[/tex] non tende a 0? :?: Comunque bell'idea, ora ci lavoro un po', grazie :D
da dduss
30 ago 2016, 15:56
Forum: Fisica
Argomento: Accelerazione di Coriolis
Risposte: 3
Visite : 4031

Accelerazione di Coriolis

Ragà, buongiorno. Ho un problema con la derivazione dell'accelerazione di Coriolis: detto I un sistema di riferimento inerziale con origine in O_I, N un sistema di riferimento non inerziale la cui origine O_N sia descritta, in I , dal vettore \vec{r_S} , si ha chiaramente \vec{r_I} = \vec{r_N} + \ve...
da dduss
30 ago 2016, 15:06
Forum: Algebra
Argomento: Proprietà della media p-esima
Risposte: 4
Visite : 635

Proprietà della media p-esima

Buongiorno a tutti, ho delle difficoltà a dimostrare delle proprietà della media p-esima di un vettore di reali positivi definita come $M_{p}\left(x_1;x_2;...;x_n\right)=\left(\frac{1}{n}\sum x_i ^p\right)^{1/p}$. Sono riuscito a dimostrare che $$\lim_{p \to 0}M_p=GM=\sqrt[n]{\prod x_i}$$ ma ho prob...

Vai alla ricerca avanzata