La ricerca ha trovato 216 risultati

da Tess
31 ago 2017, 15:13
Forum: Combinatoria
Argomento: Own, ma se è vero probabilmente non è own
Risposte: 4
Visite : 655

Re: Own, ma se è vero probabilmente non è own

Non per trascinare gli avventori verso il vuoto su questo problema con parole quali "cercare qualcosa di estremale", ma, se ci pensate, il convex hull è un oggetto estremale. Chiaramente la vostra soluzione va benissimo. Io pensavo una cosa solo formalmente differente: prendere la circonferenza più ...
da Tess
30 ago 2017, 15:29
Forum: Olimpiadi della matematica
Argomento: Senior 2017
Risposte: 175
Visite : 27248

Re: Senior 2017

Aggiungo che più il senior è vecchio più è probabile trovarci delle soluzioni del fascicoletto (almeno mi pareva di aver trovato abbastanza roba nei senior 2006/2007/2008 ai tempi) Anche ai miei tempi mi avevano detto così. Ma avevo trovato più semplice risolvere gli esercizi che cercarli nei video...
da Tess
30 ago 2017, 15:19
Forum: Combinatoria
Argomento: Own, ma se è vero probabilmente non è own
Risposte: 4
Visite : 655

Re: Own, ma se è vero probabilmente non è own

Problema interessante, peccato che nessuno dica niente... Un aiuto che mi sento doveroso di dare è il seguente: il problema è geometrico e, come per moltissimi altri che condividono questa natura, si dovrebbe cercare un qualche oggetto estremale . Ci sono almeno due oggetti che sembrano c'entrare qu...
da Tess
30 ago 2017, 09:59
Forum: Combinatoria
Argomento: In vista del Senior
Risposte: 0
Visite : 604

In vista del Senior

Sia $X = \{1,\dots,2017\}$ e $P = \mathcal P(X) \setminus \{\emptyset\}$ l'insieme delle parti non vuote di $X$. Calcolare $$ \sum_{A \in P} \left( \min(A) + \max(A) \right). $$ Esercizio pensato per chi si approccia al livello Medium (o anche Basic, perché no?) del Senior (e non ha ancora avuto tem...
da Tess
29 ago 2017, 14:26
Forum: Olimpiadi della matematica
Argomento: Senior 2017
Risposte: 175
Visite : 27248

Re: Senior 2017

Salvador ha scritto:
29 ago 2017, 13:03
Come la recupero nei vecchi Senior?
Tieni anche conto che alcuni dei Problemi per il TF verranno spiegati (forse parzialmente) su alcune delle lezioni Basic come esempi interessanti.
da Tess
29 ago 2017, 14:10
Forum: Olimpiadi della matematica
Argomento: Senior 2017
Risposte: 175
Visite : 27248

Re: Senior 2017

Come la recupero nei vecchi Senior? Per guardare le soluzioni dei problemi del fascicolo (Parte II - Problemi per le sessioni) puoi, ovviamente, dare un'occhiata dove si tengono i materiali pubblici degli stage passati: http://olimpiadi.dm.unibo.it/videolezioni/index.php?folder=Training . Qui l'uni...
da Tess
27 ago 2017, 09:23
Forum: Algebra
Argomento: Di una facilità imbarazzante (infatti è own)
Risposte: 16
Visite : 1383

Re: Di una facilità imbarazzante (infatti è own)

Lasciati dire un paio di considerazioni. Quando cerchi di dimostrare che $f(-x) = f(x)$ c'è qualche problema con il tuo metodo (non tutti i passaggi che fai sono giustificati). Quando alla fini dici "TUTTE QUESTE VERIFICANO!!! NON MI DIMENTICO DI SCRIVERLO!!!", sappi che questa frase non ha alcun va...
da Tess
24 ago 2017, 15:11
Forum: Olimpiadi della matematica
Argomento: Senior 2017
Risposte: 175
Visite : 27248

Re: Senior 2017

Ma non c'è un elenco con il nome di ogni studente, l'albergo in cui deve andare e la camera (come per Cesenatico)? Queste informazioni esistono, o esisteranno a breve, ma è improbabile che vi arrivino prima dell'inizio dello stage. In particolare, almeno ai miei tempi, le camere si sapevano solo un...
da Tess
22 ago 2017, 09:55
Forum: Algebra
Argomento: Di una facilità imbarazzante (infatti è own)
Risposte: 16
Visite : 1383

Re: Di una facilità imbarazzante (infatti è own)

Dovresti riguardare la dimostrazione delle soluzioni all'equazione funzionale di Cauchy, insomma: perché se una f:\mathbb Q \rightarrow \mathbb Q è tale che $f(x+y) = f(x) + f(y)$ per ogni coppia $(x,y) \in \mathbb Q^2$ allora sicuramente $f(x) = ax$? Se hai presente la strada che si segue per otten...
da Tess
21 ago 2017, 20:41
Forum: Algebra
Argomento: Di una facilità imbarazzante (infatti è own)
Risposte: 16
Visite : 1383

Re: Di una facilità imbarazzante (infatti è own)

Vinci ha scritto:
20 ago 2017, 17:08
Hai ragione, ma la Cauchy continua a essere vera in ogni sottoinsieme di Q?
Cosa intendi dire?
Comunque puoi sempre provare a ridimostrartela per vedere cosa si può dire.
da Tess
21 ago 2017, 19:04
Forum: Scuole d'eccellenza e borse di studio
Argomento: Domanda veloce test SNS
Risposte: 3
Visite : 647

Re: Domanda veloce test SNS

Dipende da cosa vuoi e da quanto sei brav in fisica. Con almeno 5 su 6 giusti in fisica credo non ci siano preoccupazioni. Ai miei tempi ancora non c'era ancora il peso diverso tra matematica e fisica (che privilegia il corso che scegli) e qualcuno del mio anno è entrato (a matematica) con un punteg...
da Tess
17 ago 2017, 16:48
Forum: Glossario e teoria di base
Argomento: eserciziario senior 2016
Risposte: 5
Visite : 1000

Re: eserciziario senior 2016

EvaristeG ha scritto:
17 ago 2017, 04:39
Piano con le promesse [..] sull'abbondanza di esercizi!
Qui parlavo per me, effettivamente.

@Luke99: ci saranno più esercizi di combinatoria!
da Tess
17 ago 2017, 16:45
Forum: Olimpiadi della matematica
Argomento: Senior 2017
Risposte: 175
Visite : 27248

Re: Senior 2017

provvedevo a consegnare un file in cui tutte le scritte sono rosse... :D Non ci pensare nemmeno! :evil: Specialmente spera che io non debba mai correggere tuoi compiti (agli stage) scritti con la penna rossa. Non sarebbe la prima volta che mi succede; puoi farti raccontare cosa ti potrebbe succeder...
da Tess
17 ago 2017, 16:41
Forum: Teoria dei Numeri
Argomento: Uomini di Stato
Risposte: 4
Visite : 651

Re: Uomini di Stato

Perché questo problema dovrebbe andare in TDN?
da Tess
16 ago 2017, 16:19
Forum: Matematica non elementare
Argomento: Non ci sono abituato (sicuramente facile per voi)
Risposte: 1
Visite : 587

Re: Non ci sono abituato (sicuramente facile per voi)

Perché hai postato in MNE? Sarebbe più corretto in Algebra.

Per rispondere al Dilemma 1, quel passaggio è corretto (anche se non stai facendo niente).

Cosa vuoi fare o sapere da quella sommatoria?