How many proofs of the Nebitt's Inequality? Cao Minh Quang

1. Introduction

On March, 1903, Nesbitt proposed the following problem

$$
\begin{equation*}
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} \tag{1}
\end{equation*}
$$

The above inequality is a famous problem. There are many people interested in and solved (1). In this paper, I would send readers some proofs of (1). And now, we begin.

2. Some proofs

Proof 1. Using the well - known inequality

$$
(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 9 \text { for } x, y, z>0
$$

We get

$$
\begin{aligned}
& \left(\frac{a}{b+c}+1\right)+\left(\frac{b}{b+c}+1\right)+\left(\frac{c}{a+b}+1\right)= \\
& =\frac{1}{2}[(a+b)+(b+c)+(c+a)]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{c}{c+a}\right) \geq \frac{9}{2}
\end{aligned}
$$

Therefore, $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{9}{2}-3=\frac{3}{2}$.
Proof 2. Setting $x=b+c, y=c+a, z=a+b$, then

$$
a=\frac{y+z-x}{2}, b=\frac{z+x-y}{2}, c=\frac{x+y-z}{2}
$$

(1) can be written as

$$
\begin{aligned}
& \frac{y+z-x}{2 x}+\frac{z+x-y}{2 y}+\frac{x+y-z}{2 z} \geq \frac{3}{2} \\
& \Longleftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right) \geq 6
\end{aligned}
$$

This inequality is clearly true by the well - known inequality

$$
\frac{p}{q}+\frac{q}{p} \geq 2 \text { for } p, q>0
$$

Proof 3. (1) is equivalent to

$$
\begin{aligned}
2[a(a+b)(a+c)+b(b+a)(b+c) & +c(c+a)(c+b)] \geq \\
& \geq 3(a+b)(b+c)(c+a)
\end{aligned}
$$

$\Longleftrightarrow 2\left(a^{3}+b^{3}+c^{3}\right) \geq a b(a+b)+b c(b+c)+c a(a+b)$.
The inequality follows by the well - known inequality

$$
x^{3}+y^{3} \geq x y(x+y)\left(\Longleftrightarrow(x+y)(x-y)^{2} \geq 0\right) \text { for } x, y \geq 0
$$

Proof 4. Using the AM - GM inequality, we obtain

$$
\frac{a^{2}}{b+c}+\frac{b+c}{4} \geq 2 \sqrt{\frac{a^{2}}{b+c} \cdot \frac{b+c}{4}}=a
$$

Similarly, we get $\frac{b^{2}}{c+a}+\frac{c+a}{4} \geq b$, and $\frac{c^{2}}{a+b}+\frac{a+b}{4} \geq c$.
Adding three above inequalities, we have

$$
\frac{a^{2}}{b+c}+\frac{b^{2}}{b+c}+\frac{c^{2}}{a+b}+\frac{a+b+c}{2} \geq a+b+c
$$

$\Longleftrightarrow\left(\frac{a^{2}}{b+c}+a\right)+\left(\frac{b^{2}}{b+c}+b\right)+\left(\frac{c^{2}}{a+b}+c\right) \geq \frac{3}{2}(a+b+c)$
$\Longleftrightarrow \frac{a(a+b+c)}{b+c}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{a+b} \geq \frac{3}{2}(a+b+c)$
$\Longleftrightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}$.
Proof 5. Setting $A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}, B=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}, C=$ $\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}$ then $B+C=3, A+B=\frac{a+b}{b+c}+\frac{b+c}{c+a}+\frac{c+a}{a+b}$, and $A+C=\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{c+b}{a+b}$.

By the AM - GM inequality, we have

$$
A+B \geq 3 \sqrt[3]{\frac{a+b}{b+c} \cdot \frac{b+c}{c+a} \cdot \frac{c+a}{a+b}}=3, A+C \geq 3 \sqrt[3]{\frac{a+c}{b+c} \cdot \frac{b+a}{c+a} \cdot \frac{c+b}{a+b}}=3
$$

Thus, $2 A+B+C \geq 6$ or $A \geq \frac{3}{2}$.
Proof 6. By the AM - GM inequality, we have

$$
\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{b^{3}} \geq 3 \sqrt[3]{\sqrt{a^{3} b^{6}}}=3 b \sqrt{a}
$$

and $\sqrt{a^{3}}+\sqrt{c^{3}}+\sqrt{c^{3}} \geq 3 \sqrt[3]{\sqrt{a^{3} c^{6}}}=3 c \sqrt{a}$.
Adding two inequalities, we get

$$
2\left(\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}\right) \geq 3 \sqrt{a}(b+c)
$$

Thus, $\frac{a}{b+c} \geq \frac{3}{2} \cdot \frac{\sqrt{a^{3}}}{\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}}$.
Similarly, we have $\frac{b}{c+a} \geq \frac{3}{2} \cdot \frac{\sqrt{b^{3}}}{\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}}, \frac{c}{a+b} \geq \frac{3}{2} \cdot \frac{\sqrt{c^{3}}}{\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}}$.
Adding three above inequalities, we obtain

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} \cdot \frac{\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}}{\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}}=\frac{3}{2}
$$

Proof 7. Using the well - known inequality
$(x+y)^{2} \geq 4 x y$, for $x, y \geq 0$.
We have

$$
[2 a+(b+c)]^{2} \geq 4.2 a(b+c) \text { or } 4 a^{2}+4 a(b+c)+(b+c)^{2} \geq 8 a(b+c)
$$

Hence, $4 a(a+b+c) \geq(b+c)[8 a-(b+c)] \Longrightarrow \frac{a}{b+c} \geq \frac{1}{4} \cdot \frac{8 a-b-c}{a+b+c}$.
Similarly, we get $\frac{b}{c+a} \geq \frac{1}{4} \cdot \frac{8 b-c-a}{a+b+c}, \frac{c}{a+b} \geq \frac{1}{4} \cdot \frac{8 c-a-b}{a+b+c}$.
Adding three inequalities, we have

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{1}{4} \cdot \frac{6(a+b+c)}{a+b+c}=\frac{3}{2}
$$

Proof 8. (By Cao Minh Quang) Using the AM - GM inequality, we have

$$
\frac{2(a+b+c)}{3}=\frac{2 a+(b+c)+(b+c)}{3} \geq \sqrt[3]{2 a(b+c)^{2}}
$$

Thus, $\frac{a}{b+c} \geq \frac{3 \sqrt{3}}{2} \cdot \frac{a \sqrt{a}}{\sqrt{(a+b+c)^{3}}}$. Similarly, we get

$$
\frac{b}{c+a} \geq \frac{3 \sqrt{3}}{2} \cdot \frac{b \sqrt{b}}{\sqrt{(a+b+c)^{3}}} \text { and } \frac{c}{a+b} \geq \frac{3 \sqrt{3}}{2} \cdot \frac{c \sqrt{c}}{\sqrt{(a+b+c)^{3}}}
$$

Adding three inequalities, we have

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3 \sqrt{3}}{2} \cdot \frac{a \sqrt{a}+b \sqrt{b}+c \sqrt{c}}{\sqrt{(a+b+c)^{3}}}
$$

We have to show that

$$
\begin{align*}
& \frac{3 \sqrt{3}}{2} \cdot \frac{a \sqrt{a}+b \sqrt{b}+c \sqrt{c}}{\sqrt{(a+b+c)^{3}}} \geq \frac{3}{2} \\
\Longleftrightarrow & 3(a \sqrt{a}+b \sqrt{b}+c \sqrt{c})^{2} \geq(a+b+c)^{3} . \tag{2}
\end{align*}
$$

We set $x=\sqrt{a}, y=\sqrt{b}, z=\sqrt{c}$. (2) can be written as

$$
3\left(x^{3}+y^{3}+z^{3}\right)^{2} \geq\left(x^{2}+y^{2}+z^{2}\right)^{3}
$$

By the Cauchy - Schwarz inequality, we have

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)^{2} \leq\left(x^{3}+y^{3}+z^{3}\right)(x+y+z) \tag{3}
\end{equation*}
$$

By the Chebyshev's inequality, we have

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)(x+y+z) \leq 3\left(x^{3}+y^{3}+z^{3}\right) \tag{4}
\end{equation*}
$$

Multiplying (3) and (4) yields, we obtain

$$
3\left(x^{3}+y^{3}+z^{3}\right)^{2} \geq\left(x^{2}+y^{2}+z^{2}\right)^{3}
$$

Proof 9. (1) is equivalent to

$$
\begin{aligned}
& \left(\frac{a}{b+c}-\frac{1}{2}\right)+\left(\frac{b}{c+a}-\frac{1}{2}\right)+\left(\frac{c}{a+b}-\frac{1}{2}\right) \geq 0 \\
\Longleftrightarrow & \frac{a-b+a-c}{b+c}+\frac{b-c+b-a}{b+c}+\frac{c-a+c-b}{a+b} \geq 0 \\
\Longleftrightarrow & (a-b)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)+(b-c)\left(\frac{1}{a+c}-\frac{1}{c+b}\right)+ \\
& \quad+(a-c)\left(\frac{1}{b+c}-\frac{1}{a+b}\right) \geq 0 \\
\Longleftrightarrow & \frac{(a-b)^{2}}{(b+c)(a+c)}+\frac{(b-c)^{2}}{(a+c)(a+b)}+\frac{(c-a)^{2}}{(b+c)(a+b)} \geq 0
\end{aligned}
$$

The last inequality is clearly true.
Proof 10. By the Cauchy - Schwarz inequality, we have

$$
\begin{aligned}
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{(a+b+c)^{2}}{a(b+c)+b(c+a)+c(c+a)} & = \\
=\frac{(a+b+c)^{2}}{2(a b+b c+c a)} \geq \frac{3(a b+b c+c a)}{2(a b+b c+c a)} & =\frac{3}{2}
\end{aligned}
$$

Proof 11. Without loss of generality, we can assume that $a \geq b \geq c$, then $\frac{1}{b+c} \geq \frac{1}{c+a} \geq \frac{1}{a+b}$. By the Chebyshev's inequality and the AM - GM inequality, we have

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{1}{3}(a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)= \\
& =\frac{1}{6}[(a+b)+(b+c)+(c+a)]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{c}{c+a}\right) \geq \frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

Proof 12. Setting $x=\frac{a}{b+c}, y=\frac{b}{c+a}, z=\frac{c}{a+b}$, and $A=\frac{x+y+z}{3}$. We need to prove that $A \geq \frac{1}{2}$. We have

$$
\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1 .
$$

Thus, $1=2 x y z+x y+y z+z x$.
By the AM - GM inequality, we get

$$
1=2 x y z+x y+y z+z x \leq 2 A^{3}+3 A^{3} \Longrightarrow(2 A-1)(A+1)^{2} \geq 0
$$

Since $A>0$, hence $A \geq \frac{1}{2}$.
Proof 13. Using the same substitution as the $12^{\text {th }}$ proof, and setting $f(t)=$ $\frac{t}{1+t}$. It is easy to show that $f(t)$ is increase and concave on $(0,+\infty)$. By the Jensen's inequality, we have

$$
\begin{aligned}
& f\left(\frac{1}{2}\right)=\frac{1}{3}=\frac{1}{3}[f(x)+f(y)+f(z)] \leq f\left(\frac{x+y+z}{3}\right) \\
\Longrightarrow & \frac{1}{2} \leq \frac{x+y+z}{3} \text { or } \frac{3}{2} \leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} .
\end{aligned}
$$

Proof 14. (By Cao Minh Quang) Firstly, we state and prove a lemma.
Lemma. If $x_{i}, y_{i},(i=1,2,3)$ are positive real numbers satisfy that $x_{1} \geq$ $x_{2} \geq x_{3}, y_{1} \geq y_{2} \geq y_{3}$, then

$$
\begin{equation*}
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \geq x_{1} y_{i_{1}}+x_{2} y_{i_{2}}+x_{3} y_{i_{3}} \tag{5}
\end{equation*}
$$

where $\left(i_{1}, i_{2}, i_{3}\right)$ is a permutation of $(1,2,3)$.
Proof (5). We set $z_{1}=y_{i_{1}}, z_{2}=y_{i_{2}}, z_{3}=y_{i_{3}}$. (5) becomes

$$
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \geq x_{1} z_{1}+x_{2} z_{2}+x_{3} z_{3}
$$

$\Longleftrightarrow x_{1}\left(y_{1}-z_{1}\right)+x_{2}\left(y_{2}-z_{2}\right)+x_{3}\left(y_{3}-z_{3}\right) \geq 0$.
It is easy to see that $y_{1} \geq z_{1}, y_{1}+y_{2} \geq z_{1}+z_{2}$ and $y_{1}+y_{2}+y_{3}=z_{1}+z_{2}+z_{3}$. Therefore,

$$
\begin{aligned}
& x_{1}\left(y_{1}-z_{1}\right)+x_{2}\left(y_{2}-z_{2}\right)+x_{3}\left(y_{3}-z_{3}\right) \geq x_{2}\left(y_{1}-z_{1}\right)+x_{2}\left(y_{2}-z_{2}\right)+ \\
& +x_{3}\left(y_{3}-z_{3}\right)=x_{2}\left[\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)\right]+x_{3}\left(y_{3}-z_{3}\right) \geq x_{3}\left[\left(y_{1}+y_{2}\right)-\right. \\
& \left.-\left(z_{1}+z_{2}\right)\right]+x_{3}\left(y_{3}-z_{3}\right)=x_{3}\left[\left(y_{1}+y_{2}+y_{3}\right)-\left(z_{1}+z_{2}+z_{3}\right)\right]=0 .
\end{aligned}
$$

Let us now prove (1). Without loss of generality, we can assume that $a \geq$ $b \geq c$, then $\frac{1}{b+c} \geq \frac{1}{c+a} \geq \frac{1}{a+b}$. Using (5), we get

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b} \text { and } \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b} .
\end{aligned}
$$

Adding two inequalities, we obtain

$$
\begin{aligned}
& 2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) \geq \frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a+b}{a+b}=3 \text { or } \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}
\end{aligned}
$$

Proof 15. Without loss of generality, we can assume that $a \geq b \geq c$. We set $x=\frac{a}{c}, y=\frac{b}{c}$, then $x \geq y \geq 1$.
(1) becomes

$$
\begin{equation*}
\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y} \geq \frac{3}{2} \tag{6}
\end{equation*}
$$

Using the AM - GM inequality, we have

$$
\frac{x+1}{y+1}+\frac{y+1}{x+1} \geq 2 \Longrightarrow \frac{x}{y+1}+\frac{y}{x+1} \geq 2-\frac{1}{x+1}-\frac{1}{y+1}
$$

It suffices to prove that

$$
2-\frac{1}{x+1}-\frac{1}{y+1} \geq \frac{3}{2}-\frac{1}{x+y}
$$

$\Longleftrightarrow \frac{1}{2}-\frac{1}{y+1} \geq \frac{1}{x+1}-\frac{1}{x+y}$
$\Longleftrightarrow \frac{y-1}{2(y+1)} \geq \frac{y-1}{(x+1)(x+y)}$
$\Longleftrightarrow \frac{(y-1)[(x+1)(x+y)-2(y+1)]}{2(x+y)(x+1)(y+1)} \geq 0$.
The last inequality i true since $x \geq y \geq 1$.
To prove (6), beside the above proof, we also have an another proof.
Proof 16. We set $m=x+y, n=x y$.
(6) becomes

$$
\frac{m^{2}-2 n+m}{m+n+1}+\frac{1}{m} \geq \frac{3}{2}
$$

$\Longleftrightarrow 2 m^{3}-m^{2}-m+2 \geq n(7 m-2)$
We note that $7 m-2>0$ and $m^{2} \geq 4 n$. It suffices to prove that

$$
4\left(2 m^{3}-m^{2}-m+2\right) \geq m^{2}(\overline{7} m-2) \Longleftrightarrow(m-2)^{2}(m+2) \geq 0
$$

This inequality is clearly true.
Proof 17. (By Cao Minh Quang)
By setting $x=\frac{a}{b}, y=\frac{b}{c}, z=\frac{c}{a}$, then $x y z=1$.
(1) can be written as

$$
\begin{align*}
& \frac{x}{x z+1}+\frac{y}{y x+1}+\frac{z}{z y+1} \geq \frac{3}{2} \\
\Longleftrightarrow & 2\left(x^{2} y+y^{2} z+z^{2} x\right) \geq(x+y+z)+(x y+y z+z x) \tag{7}
\end{align*}
$$

Using the AM - GM inequality, we have

$$
\begin{aligned}
& \left(x^{2} y+y^{2} z+z^{2} x\right)=\frac{1}{3}\left[\left(x^{2} y+y^{2} z+y^{2} z\right)+\left(y^{2} z+z^{2} x+z^{2} x\right)+\right. \\
& \left.+\left(z^{2} x+x^{2} y+x^{2} y\right)\right] \geq \sqrt[3]{x^{2} y^{5} z^{2}}+\sqrt[3]{y^{2} z^{5} x^{2}}+\sqrt[3]{z^{2} x^{5} y^{2}}=x+y+z
\end{aligned}
$$

Using the AM - GM inequality again, we have

$$
\begin{aligned}
& \left(x^{2} y+y^{2} z+z^{2} x\right)=\frac{1}{3}\left[\left(x^{2} y+z^{2} x+z^{2} x\right)+\left(y^{2} z+x^{2} y+x^{2} y\right)+\right. \\
& \left.+\left(z^{2} x+y^{2} z+y^{2} z\right)\right] \geq \sqrt[3]{x^{4} z^{4} y}+\sqrt[3]{x^{4} y^{4} z}+\sqrt[3]{x y^{4} z^{4}}=x z+x y+y z
\end{aligned}
$$

Adding two inequalities, we get (7).
Since (1) in the homogeneous, we can assume that $a+b+c=1$.
We have to prove

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}, \text { where } a+b+c=1
$$

We have some proofs of (1')
Proof 18. For $0<x<1$, we note that

$$
4 x-(1-x)(9 x-1)=(3 x-1)^{2}
$$

Hence, $4 x \geq(1-x)(9 x-1)$ or $\frac{x}{1-x} \geq \frac{9 x-1}{4}$.
Therefore,

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c} \geq \\
& \geq \frac{9 a-1}{4}+\frac{9 b-1}{4}+\frac{9 c-1}{4}=\frac{9(a+b+c)-3}{4}=\frac{3}{2}
\end{aligned}
$$

Proof 19. (By Cao Minh Quang) For $0<x<1$, we note that

$$
(3 x-1)^{2} \geq 0 \Longleftrightarrow 3 x+1 \geq 9 x(1-x)
$$

Hence $\frac{1}{1-x} \geq \frac{9 x}{3 x+1}$ or $\frac{x}{1-x} \geq \frac{9 x^{2}}{3 x+1}$.
Therefore, by Cauchy - Schwarz Inequality, we have

$$
\begin{aligned}
& \quad \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c} \geq \\
& \geq \frac{9 a^{2}}{3 a+1}+\frac{9 b^{2}}{3 b+1}+\frac{9 c^{2}}{3 c+1} \geq \frac{(3 a+3 b+3 c)^{2}}{3(a+b+c)+3}=\frac{3}{2}
\end{aligned}
$$

Proof 20. (By Cao Minh Quang) For $0<x<1$, by the AM - GM inequality, we get

$$
(2-2 x)(1+x)(1+x) \leq\left[\frac{(2-2 x)+(1+x)+(1+x)}{3}\right]^{3}=\frac{64}{27}
$$

Therefore, $\frac{x}{1-x} \geq \frac{27}{32} x(1+x)^{2}$.
Using the well - known inequality

$$
\frac{x^{r}+y^{r}+z^{r}}{3} \geq\left(\frac{x+y+z}{3}\right)^{r}, \text { for } x, y, z \geq 0, r \geq 1
$$

We get

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c} \geq \\
& \geq \frac{27}{32} \sum_{a, b, c} a(1+a)^{2}=\frac{27}{32}\left[\sum_{a, b, c} a^{3}+2 \sum_{a, b, c} a^{2}+\sum_{a, b, c} a\right] \geq \\
& \geq \frac{27}{32}\left[3\left(\frac{1}{3}\right)^{3}+6\left(\frac{1}{3}\right)^{2}+1\right]=\frac{3}{2} .
\end{aligned}
$$

Proof 21. (By Cao Minh Quang) By the AM - GM inequality, we get

$$
\frac{a}{b+c}+\frac{9 a(b+c)}{4} \geq 2 \sqrt{\frac{a}{b+c} \cdot \frac{9 a(b+c)}{4}}=3 a .
$$

Similarly, we have $\frac{b}{c+a}+\frac{9 b(c+a)}{4} \geq 3 b, \frac{c}{a+b}+\frac{9 c(a+b)}{4} \geq 3 c$.
Adding three inequalities and noting that

$$
(a+b+c)=(a+b+c)^{2} \geq 3(a b+b c+c a)
$$

We obtain

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq 3(a+b+c)-\frac{9}{2}(a b+b c+c a) \geq \\
& =\frac{3}{2}(a+b+c)+\left[\frac{3}{2}(a+b+c)-\frac{9}{2}(a b+b c+c a)\right] \geq \frac{3}{2}
\end{aligned}
$$

Proof 22. Setting $f(t)=\frac{t}{1-t}$. It is easy to show that $f(t)$ is a convex function on $(0,1)$. By the Jensen's inequality, we obtain

$$
f(a)+f(b)+f(c) \geq 3 f\left(\frac{a+b+c}{3}\right)
$$

or $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c} \geq \frac{3}{2}$.
Proof 23. Without loss of generality, we can assume that $a \geq b \geq c$. We get $a \geq \frac{1}{3}, c \leq \frac{1}{3}$, which follows that $(a, b, c) \succeq\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

Since $f(t)=\frac{t}{1-t}$ is a convex function on $(0,1)$, by the Karamata's inequality, we obtain

$$
f(a)+f(b)+f(c) \geq f\left(\frac{1}{3}\right)+f\left(\frac{1}{3}\right)+f\left(\frac{1}{3}\right)
$$

or $\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c} \geq \frac{3}{2}$.
We are done.
Proof 24. (By Cao Minh Quang) To prove (1'), we need to prove a lemma.
Lemma. (Cao Minh Quang and Tran Tuan Anh)
If a, b, c are positive real numbers such that $a+b+c=1$, then

$$
\frac{a+b c}{b+c}+\frac{b+c a}{c+a}+\frac{c+a b}{a+b} \geq 2
$$

Proof. Using the well - known inequality

$$
x^{2}+y^{2}+z^{2} \geq x y+y z+z x, \text { for } x, y, z \geq 0
$$

We get

$$
\begin{array}{r}
\frac{a+b c}{b+c}+\frac{b+c a}{c+a}+\frac{c+a b}{a+b}=\frac{(a+b)(a+c)}{b+c}+\frac{(b+c)(b+a)}{c+a}+ \\
\quad+\frac{(c+a)(c+b)}{a+b} \geq(a+b)+(b+c)+(c+a)=2
\end{array}
$$

We now prove (1^{\prime}). Using the well - known inequality

$$
\frac{x y}{x+y} \leq \frac{1}{4}(x+y), \text { for } x, y>0
$$

We obtain

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq 2-\left(\frac{b c}{b+c}+\frac{c a}{c+a}+\frac{a b}{a+b}\right) \geq \\
& \geq 2-\frac{1}{4}[(b+c)+(c+a)+(a+b)]=\frac{3}{2}
\end{aligned}
$$

Last, we use "Mixing Variables Theorem" to prove (1).
Proof 25. By setting $E(a, b, c)=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}, t=\frac{a+b}{2}$, and $v=\frac{a+b+c}{3}$. It is easy to see that

$$
E(a, b, c)=\frac{a^{2}+b^{2}+c(a+b)}{a b+c^{2}+c(a+b)}+\frac{c}{a+b} \geq \frac{2 t^{2}+2 t c}{t^{2}+c^{2}+2 c t}+\frac{c}{2 t}=E(t, t, c)
$$

Thus, $E(a, b, c) \geq E(v, v, v)=\frac{3}{2}$.
3. Some general results of the Nesbitt's Inequality

In recent years, by some powerful tools to prove inequalities, people found out some inequalities which is "stronger" than (1). There are

Problem 1. [Titu Vareescu, Mircea Lascu] Let a, b, c, α be positive real numbers such that $a b c=1$ and $\alpha \geq 1$. Prove that

$$
\frac{a^{\alpha}}{b+c}+\frac{b^{\alpha}}{c+a}+\frac{c^{\alpha}}{a+b} \geq \frac{3}{2}
$$

Problem 2. [Tran Tuan Anh] Let a, b, c, k be positive real numbers such that $k \geq \frac{2}{3}$. Prove that

$$
\left(\frac{a}{b+c}\right)^{k}+\left(\frac{b}{c+a}\right)^{k}+\left(\frac{c}{a+b}\right)^{k} \geq \frac{3}{2^{k}}
$$

And a problem is "stronger" than problem 2 is
Problem 3. [Vasile Cirtoaje] Let a, b, c, r be positive real numbers such that $r \geq \frac{\ln 3}{\ln 2}-1$. Prove that

$$
\left(\frac{2 a}{b+c}\right)^{r}+\left(\frac{2 b}{c+a}\right)^{r}+\left(\frac{2 c}{a+b}\right)^{r} \geq 3
$$

Problem 4. [Tran Nam Dung] Let a, b, c be positive real numbers. Prove that

$$
\frac{1}{2}+\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq 2-\frac{1}{2} \cdot \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}
$$

But problem 4 is weaker than problem 5
Problem 5. [Vasile Cirtoaje] Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{13}{6}-\frac{2}{3} \cdot \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}
$$

Problem 6. [Cezar Lupu] Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{a^{2}+b c}{(a+b)(a+c)}+\frac{b^{2}+c a}{(b+a)(b+c)}+\frac{c^{2}+a b}{(c+a)(c+b)}
$$

Problem 7. [Cao Minh Quang] Let a, b, c be positive real numbers and m, n be nonnegative real numbers such that $a+b+c=1,6 m \geq 5 n$. Prove that

$$
\frac{m a+n b c}{b+c}+\frac{m b+n c a}{c+a}+\frac{m c+n a b}{a+b} \geq \frac{3 m+n}{2}
$$

The story of "the Nesbitt's Inequality" is still. Hoping anyone will find out an another of (1) on a recent day.

Address: Cao Minh Quang, Nguyen Binh Khiem high school, Vinh Long town, Vinh Long, Vietnam.

E-mail: kt13quang@yahoo.com

References

[1]. Hojoo Lee, Topics in Inequalities - Theorems and Techniques, 2006, unpulished.
[2]. Pham Kim Hung (in Vietnamese), Secrets in Inequalities, 2006.
[3]. Titu Andresscu, Vasile Cirtoaje, Gabriel Pospinescu, Mircea Lascu, Old and New Inequalities, Gil publishing House, 2004.
[4]. Vasile Critoaje, Algebraic Inequalities, Old and New Methods, Gil publishing House, 2004.
[5]. Mathematics and Youth Magazine, (in Vietnamese) (link: www.nxbgd.com.vn/toanhoctuoitre)

