Oliforum contest -3rd edition

Paolo Leonetti

November 16, 2012

Proposition 1. Show that there exist infinitely many positive integers n such that n^{2} divides $2^{n}+3^{n}$

Proposition 2. Show that for every polynomial $f(x)$ with integer coefficients, there exists infinitely many positive integer n such that the sum of digits of $f(n)$ is constant.

Proposition 3. Show that if equiangular hexagon has sides a, b, c, d, e, f in order then $a-d=e-b=c-f$.

Proposition 4. Show that if $a \geq b \geq c \geq 0$ then

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0
$$

Proposition 5. Consider a cyclic quadrilateral $A B C D$ and define points $X=A B \cap C D, Y=A D \cap B C$, and suppose that there exists a circle with center Z inscribed in $A B C D$. Show that the Z belongs to the circle with diameter $X Y$, which is orthogonal to circumcircle of $A B C D$.

Proposition 6. Suppose that every integer is colored using one of 4 colors. Let m, n be distinct odd integers such that $m+n \neq 0$. Prove that there exist integers a, b of the same color such that $a+b$ equals one of the numbers $m, n, m-n, m+n$.

Proof. Problem 1.

$n_{1}:=5$ works. Suppose $n_{i} \in \mathbb{N}_{0}$ works, then since $2^{n}+3^{n}>n^{2}$ for all integers $n>0$, there exists a prime $p_{i}>2$ such that $p_{i} n_{i}^{2}$ $2^{n_{i}}+3^{n_{i}}$. Now

$$
2^{p_{i} n_{i}}+3^{p_{i} n_{i}}=\left(2^{n_{i}}+3^{n_{i}}\right)\left(\sum_{0 \leq j \leq p-1}(-1)^{j} 2^{n_{i} j} 3^{(p-1-j) n_{i}}\right)
$$

Then $p_{i} \mid 2^{n_{i}}+3^{n_{i}}$ and

$$
\begin{gathered}
\sum_{0 \leq j \leq p-1}(-1)^{j} 2^{n_{i} j} 3^{(p-1-j) n_{i}} \equiv \sum_{0 \leq j \leq p-1}(-1)^{j} 2^{n_{i} j}(-2)^{n_{i}(p-1-j)} \\
\equiv \sum_{0 \leq j \leq p-1} 2^{n_{i}(p-1)} \equiv 0 \quad\left(\bmod p_{i}\right)
\end{gathered}
$$

It implies that $n_{i+1}:=n_{i} p_{i}$ is a suitable integer.

Proof. Problem 2.

Lemma: there exists a integer y such that $q_{y}(x):=p(x+y) \in$ $\mathbb{N}[x]$.

Proof: Define $p(x)=\sum_{0 \leq j \leq d} a_{j} x^{j}$ for some integers $a_{0}, a_{1}, \ldots, a_{d}$ such that wlog $d>0$.

If $a_{i} \geq 0$ for all $i=0,1, \ldots, d$, then it's enough to choose $y=0$. Otherwise we can define $r:=\max \left\{n \in \mathbb{N} \cap[0, d-1]: a_{n}<0\right.$. Notice that the polynomial

$$
q_{-r}(x)=p(x-r)=\sum_{j=0}^{r} a_{j}\left(x-a_{r}\right)^{j}+\sum_{j=r+1}^{d} a_{j}\left(x-a_{r}\right)^{j}
$$

has the coefficient of x^{r} equals to

$$
a_{r}+\left(\sum_{j=r+1}^{d} a_{j}\binom{j}{r}\left(-a_{r}\right)^{j-r}\right) \geq a_{r}+a_{d} \cdot\left(-a_{r}\right) \geq 0
$$

and obviously the coefficients of x^{j} are non negative for all $r+1 \leq$ $j \leq d$.

It means that the greatest negative index of $q_{-r}(x)$ (if it exists) is not greater than $r-1$.

Iterating this process on $q_{-r}(x)$ and so on, this alghoritm must end in a finite number of steps, and we get the result. []

Turning back to the original problem, once we know that $p(x)=$ $q_{y}(x-y)$ and $q_{y}(x) \in \mathbb{N}[x]$, it's enough to choose $x=10^{m}+y$ for all m sufficiently large: in that case indeed $s(p(x))$ equals to the sum of coefficients of $q_{y}(x)$.

Proof. Problem 3. Expand every second side of the hexagon to obtain a equilateral triangle $A B C$. Since $A B=B C=C A$, the result follows.

Proof. Problem 4. We have

$$
\begin{gathered}
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a)= \\
=\left(a^{2} b(a-b)-a b^{2}(a-b)\right)+\left(b^{2} c\left(b-c-a b^{2}(b-c)\right)+\left(c^{a}(c-a)-a b^{2}(c-a)\right)=\right. \\
=a b(a-b)^{2}+\left(a b+a c-b^{2}\right)(a-c)(b-c) \geq 0
\end{gathered}
$$

Proof. Problem 5.

$$
\begin{gathered}
\angle A X Y+\angle A Y X=\pi-\angle X A Y=\angle B C D \\
\angle C X Y+\angle C Y X=\pi-\angle X C Y=\pi-\angle B C D
\end{gathered}
$$

and recalling that $Z Y$ and $Z X$ are bisectors of $\angle A X C$ and $\angle A Y C$, then

$$
\angle Z X Y+\angle Z Y X=\pi / 2
$$

and that's enough to conclude that Z belongs to the circle with diameter $X Y$.

Moreover, define $W=A C \cap B D$. Then W is the polar of $X Y$ with respect to the external circle of $A B C D$, and similarly Y of $X W$ and X of $W Y$. Define O the circumcenter of $A B C D$. We have that $O X \perp W Y$ (since it's polar); define also $T=O X \cap W Y$. Then T is the inverse of X with respect to the circle, but we have that $\angle X T Y=\pi / 2$, so T belongs to the circle with diameter $X Y$. The same holds for Y. It's enough to conclude that the circle with diameter $X Y$ is fixed for inversion in the circle external to $A B C D$, i.e. they are orthogonal.

Proof. Problem 6. Suppose for the sake of contradiction that $a-$ $b \in\{m, n, m-n, m+n\}$ implies that a and b are colored differently. First, note that the condition implies that for any a, the numbers $a, a+n, a+m, a+n+m$ are all colored differently. Then, by a simple induction on k, the numbers $a+k m+n$ and $a+k m$ have the same set of colors as a and $a+n$ do for k even, and they have different colors if k is odd. Then, by a simple induction on j, if k is any odd integer, the numbers $a+k m+j n$ and $a+j n$ have the same set of colors as a and $a+k m$ do for j even, and they have the opposite colors if j is odd.

Then, putting $k=n$ and $j=m$, we have a contradiction: that $a+m n$ and $a+n m$ have different colors.

