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The problem I intend to discuss here was mentioned in the prior HCMR—in particular, author
Zachary Abel [Ab, p. 79] stated that “the set {

√
n | n ∈ N is squarefree} is linearly independent

over rationals.” More formally:

Problem. Let n1, n2, . . . , nk be distinct squarefree integers. Show that if a1, a2, . . . , ak ∈ Z are
not all zero, then the sum S = a1

√
n1 + a2

√
n2 + . . .+ ak

√
nk is non-zero.

Note that this problem is equivalent to Abel’s statement, since we may clear denominators to
obtain coefficients in Z.

10.1 Preliminary Analysis
By setting Ai = a2

ini, the problem can be restated as follows: if

kX
i=1

±
√
Ai = 0,

then at least one of the expressions Ai/Aj must be a perfect square. Indeed, in our case none of
the expressions Ai/Aj = (ai/aj)

2ni/nj is a perfect square, so the sum

a1
√
n1 + a2

√
n2 + . . .+ ak

√
nk =

kX
i=1

±
√
Ai

must not be zero. The converse follows similarly.
In this form, the problem can be tackled for small values of k by simply squaring. For example,

if k = 2, we have
√
A1 −

√
A2 = 0, so

√
A1 =

√
A2. Squaring gives A1 = A2 and thus

A1/A2 = 1, which is a perfect square. If k = 3 we have WLOG that
√
A1 = ±

√
A2 +

√
A3,

and so again squaring gives A1 = A2 +A3± 2
√
A2A3. Hence

√
A2A3 = ±(A2 +A3−A1)/2,

which implies A2A3 = (A2 +A3 −A1)2/4 is a perfect square, and so

A2

A3
=
A2A3

A2
3

=

„
A2 +A3 −A1

2A3

«2

.

For k = 4 we may rewrite the problem as±
√
A1±

√
A2 = ±

√
A3±

√
A4. Then by squaring we

have A1 + A2 − A3 − A4 ± 2
√
A1A2 ± 2

√
A3A4 = 0 and we handle this using the previously

established case k = 3.

†Iurie Boreico, Harvard ’11, is a prospective mathematics concentrator residing in Weld. His mathematical
knowledge is yet too vague to define his interests, but they tend towards number theory. When not doing math,
he usually misses his home country, Moldova, or wastes his time in some other way.
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Unfortunately, this approach does not extend to k > 4, for however we rearrange the given
expressions, squaring only increases the number of radicals. In fact, as an olympiad-style problem,
this problem is very hard, and probably very few would be successful in solving it. With enough
patience and creativity, however, several solutions are possible.

10.2 Solutions
Solution 1 from [Kv]. Let p1, p2, . . . , pN be all the primes dividing n1n2 · · ·nk. We will prove
the following statement by induction on N :

Recall that S = a1
√
n1 + a2

√
n2 + . . . + ak

√
nk. Then there exists an expression S′ =

b1
√
m1 +b2

√
m2 +. . .+bl

√
ml wherem1,m2, . . . ,ml are squarefree integers with prime factors

among the p1, p2, . . . , pN and bi are integers, such that SS′ is a non-zero integer (in particular,
S 6= 0, as desired).

For N = 0 this is obvious, as in this case k = 1, n1 = 1 and we get S = a1 6= 0 so we can set
S′ = 1. For N = 1 we either have S = a1

√
p1, in which case we may let S′ =

√
p1, or we have

S = a1
√
p1 + a2. In the last case we may take S′ = −a1

√
p1 + a2, so SS′ = a2

2 − a2
1p1. This is

non-zero as a2
2 is divisible by an even power of p1, whereas a2

1p1 is divisible by an odd power of
p1, so the two cannot be equal.

Now we perform the induction step. Assume that the theorem is true for N ≤ n; we prove it
for N = n+ 1. Let pN = pn+1 = p. We may write S = S1 + S2

√
p where the primes appearing

in the radicals in S1, S2 are among p1, . . . , pn, and further, neither S1 nor S2 is identically 0 (else
we would already be done, as p would be irrelevant). So there exists a sum S′2 of the form given in
the claim such that S2S

′
2 is a non-zero integer k.

The intermediate product SS′2 can then be written as S4 + k
√
p where the primes appearing in

the radicals in S4 are also among p1, . . . , pn. We may thus multiply it by S4−k
√
p to get S2

4−k2p.
Finally, it is easy to see that all prime factors of radicals of S2

4 − k2p are among p1, . . . , pn, so,
assuming this number is not itself zero, the induction hypothesis implies that there exists a non-
zero weighted sum of radicals S5 whose prime factors appear among p1, p2, . . . , pn such that
(S2

4 − k2p)S5 is a non-zero integer. So we obtain the desired representation SS′2(S4− k
√
p)S5 ∈

Z \ {0} where S′ = S′2(S4 − k
√
p)S5 is a sum of radicals of the desired type.

Thus, we are done if we manage to prove we do not run into trouble when multiplying S4 −
k
√
p, as the product could become zero at that step (e.g. if S4 − k

√
p = 0). It is sufficient to

prove that S2
4 − k2p 6= 0. If S4 is an integer this is clear, and if S4 is of form u

√
q this also true

because u2q 6= k2p, as p does not divide q. Otherwise, S4 contains at least two distinct radicals
in its canonical expression (if we consider

√
1 as a radical),1 and we can assume without loss of

generality that pn appears in one of these two radicals but not in the other. So S4 = S6 + S7
√
pn

where S6, S7 are sums of radicals with prime factors among p1, p2, . . . , pn−1, and S6, S7 6= 0.
Therefore S2

4−k2p = S2
6 +2S6S7

√
pn+S2

7pn−k2p. As S6S7 6= 0, by expanding the expression
S2

4 − k2p we will get at least one radical containing pn. But then by the induction hypothesis, the
expression is non-zero as claimed. 2

This solution, even if it might seem somewhat unnatural and tedious, is completely logical in
its construction. By starting from the well-known idea of multiplication by a conjugate (the case
N = 1 above), the idea is to actually produce a sort of “conjugate” expression for more complicated
sums involving radicals, i.e. something involving the same radicals which when multiplied by the
original produces an integer. The (somewhat unappealing) induction step is just a set of technical
manipulations that help realize this idea.

1By the canonical representation of an expression involving radicals we mean its simplest possible form—
that is, the form obtained by extracting the squares out of the radicals and grouping together the terms which
have the same square-free numbers under the radicals. For example, (

√
2 +
√

10)2 = 2 + 2
√

2 · √10 + 10
would be brought to 2+4

√
5+10 = 12+4

√
5. The statement of the problem is just the fact that the canonical

representation is indeed “canonical,” that is, the same number can not be written as such a sum in two different
ways (otherwise subtracting the two expressions would produce a counterexample).
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If one takes as a starting point the mentioned idea of conjugate expressions, one might consider
the following question:

Question. What is the expression conjugate to
√
a1 +

√
a2 + . . .+

√
an?

We know that for n = 2 the conjugate is
√
a1 −

√
a2. Of course we could have chosen some

other combination of signs, like −√a1 −
√
a2 or −√a1 +

√
a2, but we do not get anything new

from them, as these two expression are just the original ones with the opposite sign. Given this
example, we might thnk that the expression

√
a1 +

√
a2 + . . . +

√
an has many conjugates, and

that they represent all expressions of form±√a1±
√
a2± . . .±

√
an for all combinations of pluses

and minuses. Again, we need to ensure that the same expression does not occur twice, the second
time with opposite sign, which can be realized by requiring that the sign of

√
a1 is always positive.

We get a family of 2n−1 alike sums:
√
a1±

√
a2±

√
a3± . . .±

√
an. This might suggest that the

product of this entire family could in fact be the required non-zero integer we sought in Solution 1,
but unfortunately while it is indeed possible that this product is an integer, there is no obvious way
to handle this huge expression directly and prove that it is non-zero.

These considerations inspire the next solution:
Solution 2. Consider the linear expression L(x1, x2, . . . , xn) = a1x1 + a2x2 + . . .+ anxn. We
will also consider its conjugate expressions of form L′(x1, x2, . . . , xn) = a1x1± a2x2± a3x3±
. . .± anxn. There are 2n−1 such expressions. Now take a variable T and consider the polynomial

FL,x1,x2,...,xn(T ) =
Y
L′

`
T − L′(x1, x2, . . . , xn)

´
=
Y

(T − a1x1 ± a2x2 ± . . .± anxn) ,

where the product is taken over all conjugate expressions L′ (including L).
Note that FL,x1,x2,...,xn(T ) is written as a polynomial in T , but can be considered as a poly-

nomial in x1, x2, . . . , xn. Also note that changing the signs of any of x2, x3, . . . , xn will not affect
F because doing so only permutes the set {L′}. Therefore

FL,x1,x2,...,xn(T ) = FL,x1,±x2,±x3,...,±xn(T ).

In particular, if we expand the product representation of F into a sum of monomials, each
monomial term will contain only even powers of xk (k = 2, . . . , n), because otherwise changing
the sign of xk would change the sign of the monomial. Note that this is not true for x1, as doing so
sends the set {L′} to the set {−L′}. But by expanding F into a sum of monomials and grouping
the monomials with odd and even powers of x1 we can write

FL,x1,x2,...,xn(T ) = x1P (x2
1, x2, x3, . . . , xn, T ) +Q(x2

1, x2, x3, . . . , xn, T ).

As we have seen above, P and Q do involve only monomials with even powers of x2, x3, . . . , xn,
and so they depend only on x2

2, x
2
3, . . . , x

2
n. So we can actually write

FL,x1,x2,...,xn(T ) = x1P2(x2
1, x

2
2, x

2
3, . . . , x

2
n, T ) +Q2(x2

1, x
2
2, x

2
3, . . . , x

2
n, T ).

It is also clear that if ai are integers then all the coefficients of P and Q will be integers.
Now let us return to the problem. We actually prove a different version of it: that is, that no

non-zero integer M can be represented as a nontrivial canonical sum of radicals. To see that this
implies the original problem, assume that

Pk
i=1 ai

√
ni = 0. Then, by multiplying by

√
nk, we

get
Pk−1
i=1 ai

√
nink = −aknk, which is a contradiction if we prove that no non-zero integer can

be represented as a canonical sum of radicals. So let us prove this version, by induction on k. The
base case, k = 1, is clear.

If we assume that an expression of form a1
√
n1 +a2

√
n2 + . . .+ak

√
nk equalsM ∈ Z\{0},

then the polynomial FL,√n1,
√
n2,...,

√
nk

(T ) would vanish at T = M . But we saw the polynomial
can be written simply as

√
n1P2(n1, n2, . . . , nk, T ) +Q2(n1, n2, . . . , nk, T ),
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so we would have
√
n1P2(n1, n2, . . . , nk,M) + Q2(n1, n2, . . . , nk,M) = 0. But P2(n1, . . . ,

nk, T ) andQ2(n1, . . . , nk, T ) are integers. By the base case,A+B
√
n1 = 0 impliesA = B = 0,

so we have
P (n1, n2, . . . , nk,M) = Q(n1, n2, . . . , nk,M) = 0.

Hence,
−
√
n1P (n1, n2, . . . , nk,M) +Q(n1, n2, . . . , nk,M) = 0,

i.e. FM,−√n1,
√
n2,...,

√
nk

(M) = 0. Thus,Y
(M + a1

√
n1 ± a2

√
n2 ± a3

√
n3 ± . . .± ak

√
nk) = 0,

and so M = −a1
√
n1 ± a2

√
n2 ± . . . ± ak

√
nk for some combination of signs. However, we

already have M = a1
√
n1 + a2

√
n2 + . . .+ ak

√
nk, and summing these two equalities gives

2M = (a2 ± a2)
√
n2 + (a3 ± a3)

√
n3 + . . .+ (ak ± ak)

√
nk.

This cannot happen by the induction hypothesis, and we have reached our contradiction. 2

10.3 Further Ideas
Now I will explain why I like this problem. The essential reason is that the solutions hint at many
important concepts in algebra and number theory. let us talk about some of them:
The primitive element theorem. The primitive element theorem states that any finite separable
field extension L/K contains a primitive element, i.e. an element that generates the whole exten-
sion. This problem allows us to explicitly find a primitive element (in fact many of them) for the
extension Q[

√
p1,
√
p2, . . . ,

√
pk]/Q, where p1, p2, . . . , pk are distinct primes.

The field Q[
√
p1,
√
p2, . . . ,

√
pk] consists of all combinations

P
ai
√
ni where ai ∈ Q and

n1, n2, . . . , n2k are all possible products that can be formed with p1, p2, . . . , pk. As we have
proven that

√
n1,
√
n2, . . . ,

√
nk are independent over Q, it follows that the degree of the extension

over Q is 2k. Thus to find a primitive element means to find an element θ in Q[
√
p1, . . . ,

√
pk]

which is a root of an irreducible polynomial of degree 2k. We claim our friend
√
p1 +

√
p2 + . . .+√

pk (or any of its conjugates) can be taken as θ.
Assume P ∈ Q[X] and P (θ) = 0, with P irreducible over Q. We can expand each power

of θ in P (θ) and write it as a sum of radicals, and then combine these radicals to obtain P (θ) =
a1
√
n1 + a2

√
n2 + . . .+ a2k

√
nk. The results proven above tell us that P (θ) = 0 if and only if

all ai are 0. Let us take now a conjugate of θ, say θ′ = ε1
√
p1 + ε2

√
p2 + . . . + εk

√
pk where

εi ∈ {−1, 1}. We claim P (θ′) = 0. Indeed, if we expand θ′k, the coefficient of
√
ni will either

be the same as the coefficient of
√
ni in θk, or it will be the additive inverse of that coefficient,

depending on how many of pj with εj = −1 divide
√
ni. We thus get P (θ′) =

P
i aiµi

√
ni

where µi =
Q
pj |ni

εj . As all ai are zero, we get P (θ′) = 0. Hence P has as roots all the

conjugates of±θ, of which there are 2k, so P has degree at least 2k. In fact it must have degree 2k

because θ lies in an extension of degree 2k, so θ is indeed a primitive element.
It is also clear now that P (X) =

Q
εi∈{−1,1}(X − ε1

√
p1− ε2

√
p2− . . .− εk

√
pk). The fact

that this polynomial has rational coefficients follows from the fact that

P (X) = FL,√p1,√p2,...,√pk
(X) · FL,−√p1,√p2,...,√pk

(X)

(we keep the notations of Solution 2) and this has integer coefficients from Solution 2.
The degree of extensions of radicals. We noted above that [Q(

√
p1,
√
p2, . . . ,

√
pk) : Q] = 2k

when p1, p2, . . . , pk are distinct primes. It would be interesting to show that [Q(
√
p1,
√
p2, . . . ,√

pk) : Q] = 2k with a constraint weaker than that pi be primes. The degree of this extension is
trivially at most 2k, but it may be less than that. For example we might have

√
p3 ∈ Q(

√
p1,
√
p2)

if
√
p3 = m

√
p1p2, where m ∈ Q, in which case adjoining p3 would not alter the extension. We



IURIE BOREICO—LINEAR INDEPENDENCE OF RADICALS 91

will prove that these are exactly the “uncomfortable” cases. Namely, let us take from p1, p2, . . . , pk
a maximal sequence p1, . . . , pl which is multiplicatively independent, by which we mean that the
product of any nonempty subset of elements in the sequence is not a perfect square. More explicitly,
p1, p2, . . . , pl is multiplicatively independent, but for any j > l, there exist 1 ≤ i1, . . . , ir ≤ l
such that pjpi1pi2 · · · pir = a2 is a perfect square. This means

√
pj =

a

pi1pi2 . . . pir

√
pi1pi2 . . . pir ∈ Q(

√
p1,
√
p2, . . . ,

√
pl),

and so Q(
√
p1,
√
p2, . . . ,

√
pl,
√
pj) = Q(

√
p1,
√
p2, . . . ,

√
pl). It is easy to see that [Q(

√
p1,√

p2, . . . ,
√
pl) : Q] = 2l, by arguments similar to those in previous paragraph, as the numbers

p1, p2 . . . pl have distinct squarefree parts and so are linearly independent over Q. (If they did not,
they could be multiplied to obtain perfect squares). Also, as above,

√
p1 +

√
p2 + . . . +

√
pl is

a primitive element of the extension, so the primitive element theorem is verified explicitly in this
case.

Note that
√
p1,
√
p2, . . . ,

√
pk with the operation of multiplication (and division) generate an

abelian group A. Let Q× be the multiplicative group (Q, ·). The group G = AQ× satisfies
[G : Q×] = 2l, with

√
n1,
√
n2, . . . ,

√
nl forming a complete set of representatives for G/Q×,

where the ni are all the possible 2l products
Q
i∈J⊂{1,2,...,l} pi. (The quotient G/Q× is generated

by the images of
√
n1,
√
n2, . . . ,

√
nl and is isomorphic to (Z/2Z)l). Therefore the result obtained

in this section can be rewritten as [Q(
√
p1,
√
p2, . . . ,

√
pk) : Q] = [G : Q×]. In this abstract form,

the result is easier to generalize.

Galois groups. The freedom with which one interchanged signs in front of radicals may suggest
in fact that there is no visible difference between

√
p and −√p, and they can be interchanged in

expressions when one is concerned with rationals. This idea leads to the Galois groups. Indeed,
if p1, p2, . . . , pl are multiplicatively independent then in any expression F (

√
p1,
√
p2, . . . ,

√
pk)

with F ∈ Q[X1, X2, . . . , Xk] one may change the signs to get F (±√p1,±
√
p2, . . . ,±

√
pk), and

the new expression will be conjugate to the original. In particular, it will equal 0 if and only if the
original equals 0. We thus have 2l isomorphisms of Q(

√
p1,
√
p2,
√
p3, . . . ,

√
pl) for any choices

of signs ε1, ε2, . . . , εl ∈ {−1, 1}, characterized by sending
√
pi to εi

√
pi. As the extension is

normal (since Q(
√
p1,
√
p2, . . . ,

√
pl) is the splitting field of (X2 − p1)(X2 − p2) . . . (X2 − pl))

and has degree 2l, we have found the Galois group of the extension: (Z/2Z)l.

Higher powers. The natural question is whether the statement of the problem can be extended
to radicals of any degree. Specifically, we prove that if a1, a2, . . . , an, b1, b2, . . . , bn ∈ Q+ and
ki
√
bi are not all rational, then

Pn
i=1 ai

ki
√
bi is not rational. The solution is a generalization of

Solution 2. Firstly, we may assume all the ki equal, as otherwise we can replace them by their
least common multiple and adjust the bi accordingly. So we need to prove that a sum of formPn
i=1 ai

k
√
bi = M ∈ Z cannot occur if at least one of the bi is not a perfect k-th power. Again,

we use induction on n.
Consider ξ a primitive k-th root of unity. Take the polynomial

P (X, b) =
Y“

X − b− ξi2a2
k
√
b2 − . . .− ξinan k

√
bn
”

with ai rational, where the product is taken over all choices of i2, i3, . . . , in ∈ {0, 1, . . . , k − 1}.
As replacing k

√
bi by ξ k

√
bi in the above expression preserves P , we conclude that P can be written

as a polynomial in X and b with coefficients in Q[b2, b3, . . . , bn] = Q (we did not argue this
rigorously since it is completely similar to the argument used in the original problem). Now if
M ∈ Q can be written as

Pn
i=1 ai

k
√
bi then P (M,a1

k
√
b1) = 0. Let d | k, d > 1 be the smallest

integer such that k
p
bd1 ∈ Q; then P (M,x) can be written as

q0(xd) + xq1(xd) + . . .+ xd−1qd−1(xd)
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where q0, q1, . . . , qd−1 ∈ Q[X]. So if (a1
k
√
b1)d = u ∈ Q we have

q0(u) + q1(u) d
√
u+ . . .+ qd−1(u)

d
√
ud−1 = 0.

Now note that 1, d
√
u, . . . ,

d
√
ud−1 are independent over Q, because d

√
u is the root of the irre-

ducible polynomial Xd − u. (To see that this polynomial is irreducible, note that the roots of
Xd − u have absolute value d

p
|u|, so if f(x) | Xd − u has degree m, then |f(0)| = d

p
|u|m.

But for 0 < m < d this is not rational, for if it were then (a1
k
√
b1)m = ± d

p
|u|m would be

rational, contradicting the minimality of d. So Xd− u does not have proper factors in Q[X] and is
irreducible.) Therefore we conclude that q0(u) = q1(u) = q2(u) = . . . = qd−1(u) = 0. If ε is a
primitive d-th root of unity we may conclude that

P (M, εu) = q0(u) + q1(u)ε d
√
u+ . . .+ qd−1(u)εd−1 d

√
ud−1 = 0,

so M = ε d
√
u+

Pn
i=2 ξ

liai
k
√
bi for some {li}. But then

ε d
√
u+

nX
i=2

ξliai
k
√
bi = d

√
u+

nX
i=2

ai
k
√
bi.

This is impossible as each of the terms in the left-hand side has real part less than or equal to the
corresponding term of the right-hand side (which a positive real of the same absolute value), and
the inequality is strict for the first term.
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